1
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
2
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Khatri U, Gouda MA, Pandey S, Chauhan NK, Shen T, Hu X, Li M, Huang S, Subbiah V, Wu J. Selpercatinib mitigates cancer cachexia independent of anti-tumor activity in the HT1080 tumor model. Cancer Lett 2025; 611:217444. [PMID: 39778760 DOI: 10.1016/j.canlet.2025.217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown. Using a RET-negative tumor model, we evaluated the activity of the RET-selective inhibitor selpercatinib (LOXO-292) against cancer cachexia. In tumor-bearing animals, selpercatinib significantly increased food consumption, skeletal muscle mass and strength, adipose tissues, and body temperature, as well as reducing body weight loss, without significantly affecting tumor growth. Transcriptomes of skeletal muscle from mock-treated tumor-bearing mice were enriched in starvation and muscle atrophy genes, whereas those from selpercatinib-treated mice were enriched in myoblast proliferation, gluconeogenesis, and insulin receptor signaling genes. In parallel, retrospective analysis of weight gain in selpercatinib-treated patients showed that weight gain was not correlated with tumor response to selpercatinib. Our data demonstrate that selpercatinib could alleviate anorexia and cancer cachexia in an animal model and that weight gain in selpercatinib-treated patients is not dependent on tumor regression. These results identify a RET inhibitor as the first protein tyrosine kinase inhibitor for mitigating cancer cachexia.
Collapse
Affiliation(s)
- Ujjwol Khatri
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shriya Pandey
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Neeraj K Chauhan
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xueqing Hu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Min Li
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA.
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
5
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
6
|
Dev R, Amano K, Naito T, Del Fabbro E. Anamorelin for the Treatment of Cancer Anorexia-Cachexia Syndrome. Curr Oncol Rep 2024; 26:762-772. [PMID: 38771469 DOI: 10.1007/s11912-024-01549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE OF REVIEW The following review will highlight the development of anamorelin to treat cancer anorexia-cachexia syndrome (CACS) including the potential benefits, limitations, and future directions. RECENT FINDINGS Ghrelin, a 28-amino acid peptide hormone, is secreted by the stomach mucosa and regulates appetite, promotes lipogenesis, increases body weight, improves gastric motility, reduces catabolic wasting and inflammation. Several randomized, double-blind, placebo-controlled clinical trials evaluating anamorelin, a ghrelin agonist, for the treatment of CACS have reported improvement in appetite and body composition including both lean body and fat mass; however, most studies noted no improvement in physical function as assessed by measuring non-dominant hand-grip strength. Common adverse effects of anamorelin include the development of diabetes mellitus, hyperglycemia, and less frequently, hepatic abnormalities and cardiovascular events including conduction abnormalities, hypertension, and ischemic cardiomyopathy. Anamorelin has the potential to stimulate appetite, improve gastric movement, and may have anti-inflammatory effects on patients with CACS. In patients with cancer, studies involving anamorelin combined with other multimodal treatments including nutrition counseling (branched chain amino acids, omega 3 fatty acids, and other nutrients), exercise, treatment of hormonal abnormalities including hypogonadism and hypovitaminosis D, and anti-inflammatory agents are needed. Compliance with multimodality treatment has been a barrier and future studies may need to incorporate motivational counseling to promote adherence.
Collapse
Affiliation(s)
- Rony Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 1212, Houston, TX, 77030, USA.
| | - Koji Amano
- Department of Supportive and Palliative Care, Osaka International Cancer Institute, Chuo-Ku, Osaka, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology and Cancer Supportive Cancer Center, Shizuoka Cancer Center, Nagaizumi-Cho, Shizuoka, Japan
| | - Egidio Del Fabbro
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
7
|
Kwon YY, Hui S. IL-6 promotes tumor growth through immune evasion but is dispensable for cachexia. EMBO Rep 2024; 25:2592-2609. [PMID: 38671295 PMCID: PMC11169252 DOI: 10.1038/s44319-024-00144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Filis P, Tzavellas NP, Stagikas D, Zachariou C, Lekkas P, Kosmas D, Dounousi E, Sarmas I, Ntzani E, Mauri D, Korompilias A, Simos YV, Tsamis KI, Peschos D. Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment. Cancers (Basel) 2024; 16:1075. [PMID: 38473431 DOI: 10.3390/cancers16051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
In the rapidly evolving landscape of cancer cachexia research, the development and refinement of diagnostic and predictive biomarkers constitute an ongoing challenge. This study aims to introduce longitudinal muscle biopsies as a potential framework for disease monitoring and treatment. The initial feasibility and safety assessment was performed for healthy mice and rats that received two consecutive muscle biopsies. The assessment was performed by utilizing three different tools. Subsequently, the protocol was also applied in leiomyosarcoma tumor-bearing rats. Longitudinal muscle biopsies proved to be a safe and feasible technique, especially in rat models. The application of this protocol to tumor-bearing rats further affirmed its tolerability and feasibility, while microscopic evaluation of the biopsies demonstrated varying levels of muscle atrophy with or without leukocyte infiltration. In this tumor model, sequential muscle biopsies confirmed the variability of the cancer cachexia evolution among subjects and at different time-points. Despite the abundance of promising cancer cachexia data during the past decade, the full potential of muscle biopsies is not being leveraged. Sequential muscle biopsies throughout the disease course represent a feasible and safe tool that can be utilized to guide precision treatment and monitor the response in cancer cachexia research.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos P Tzavellas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Stagikas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Christianna Zachariou
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Kosmas
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Sarmas
- Department of Neurology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI 02912, USA
| | - Davide Mauri
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Korompilias
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Zhang Y, Lu W, Li X, Wang Y, Li L, Dai Y, Yang H, Wang Y. Mfat-1 ameliorates cachexia after hypoxic-ischemic brain damage in mice by protecting the hypothalamus-pituitary-adrenal axis. Life Sci 2023; 333:122172. [PMID: 37832632 DOI: 10.1016/j.lfs.2023.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
AIMS Cachexia, a metabolic syndrome, affects 21 % of patients suffering from ischemic encephalopathy. However, the specific mechanism and prevention measures are still unclear. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been proven to reduce inflammatory cytokine levels during ischemic events, but whether they have a protective effect against cachexia after hypoxic-ischemic brain damage (HIBD) remains unclear. MAIN METHODS C57BL/6J wild-type and mfat-1 transgenic male mice were treated with and without HIBD. One day after HIBD, the epididymal white fat, gastrocnemius muscle and hypothalamus were weighed and analyzed the phenotypic changes. RNA sequencing was applied to gastrocnemius muscle to identify differential genes and pathways in HIBD groups. The effect of HPA axis on cachexia post-HIBD was examined via adrenalectomy, dexamethasone (0.1 mg/kg), and corticosterone injection (100 mg/kg). KEY FINDINGS The results showed that the incidence of cachexia in mfat-1 mice, which produce high proportion of n-3 PUFAs, was significantly lower than that in wild-type mice post-HIBD. Cachexia-related factors, such as inflammation, muscle atrophy and lipid metabolism were significantly improved in mfat-1 HIBD. RNA sequencing revealed that catabolic and proteasome pathways were significantly downregulated. In hypothalamus, inflammatory cytokines, lipid peroxidation levels were reduced. Corticosterone, glucocorticoid receptor, and dexamethasone suppression test all showed that mfat-1 improved the dysfunction of the HPA axis post-HIBD. The present study elucidated for the first time that mfat-1 reduced HIBD-induced hyperactivation of the HPA axis in mice by reducing inflammation and oxidative stress and contributed to the reduction of metabolic imbalance in peripheral tissues. SIGNIFICANCE Our study provides mechanistic information for the development of intervention strategies to prevent cachexia.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Wenhan Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxue Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Kwon YY, Hui S. IL-6 is dispensable for causing cachexia in the colon carcinoma 26 model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539076. [PMID: 37205425 PMCID: PMC10187151 DOI: 10.1101/2023.05.02.539076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, which has been deemed a key cachectic factor in mice inoculated with the colon carcinoma 26 (C26) cells, one of the most widely used models of cancer cachexia. Here to test the causal role of IL-6 in cancer cachexia, we used CRISPR/Cas9 editing to knock out IL-6 in C26 cells. We found that growth of IL-6 KO C26 tumors was dramatically delayed. Most strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. We further showed an increase of immune cell populations in IL-6 KO tumors and the defective IL-6 KO tumor growth was rescued in immunodeficient mice. Thus, our results invalidated IL-6 as a necessary factor for causing cachexia in the C26 model and revealed instead its important role in regulating tumor growth via immune suppression.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Queiroz AL, Dantas E, Ramsamooj S, Murthy A, Ahmed M, Zunica ERM, Liang RJ, Murphy J, Holman CD, Bare CJ, Ghahramani G, Wu Z, Cohen DE, Kirwan JP, Cantley LC, Axelrod CL, Goncalves MD. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat Commun 2022; 13:4633. [PMID: 35941104 PMCID: PMC9360437 DOI: 10.1038/s41467-022-32135-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2022] [Indexed: 12/30/2022] Open
Abstract
Cancer cachexia is a common, debilitating condition with limited therapeutic options. Using an established mouse model of lung cancer, we find that cachexia is characterized by reduced food intake, spontaneous activity, and energy expenditure accompanied by muscle metabolic dysfunction and atrophy. We identify Activin A as a purported driver of cachexia and treat with ActRIIB-Fc, a decoy ligand for TGF-β/activin family members, together with anamorelin (Ana), a ghrelin receptor agonist, to reverse muscle dysfunction and anorexia, respectively. Ana effectively increases food intake but only the combination of drugs increases lean mass, restores spontaneous activity, and improves overall survival. These beneficial effects are limited to female mice and are dependent on ovarian function. In agreement, high expression of Activin A in human lung adenocarcinoma correlates with unfavorable prognosis only in female patients, despite similar expression levels in both sexes. This study suggests that multimodal, sex-specific, therapies are needed to reverse cachexia.
Collapse
Affiliation(s)
- Andre Lima Queiroz
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anirudh Murthy
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Roger J Liang
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jessica Murphy
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Corey D Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Curtis J Bare
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gregory Ghahramani
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Global R&D, Cambridge, MA, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
13
|
L’intestin un organe endocrine : de la physiologie aux implications thérapeutiques en nutrition. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
15
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Bernardo B, Joaquim S, Garren J, Boucher M, Houle C, LaCarubba B, Qiao S, Wu Z, Esquejo RM, Peloquin M, Kim H, Breen DM. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. J Cachexia Sarcopenia Muscle 2020; 11:1813-1829. [PMID: 32924335 PMCID: PMC7749621 DOI: 10.1002/jcsm.12618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer cachexia is a complex metabolic disease with unmet medical need. Although many rodent models are available, none are identical to the human disease. Therefore, the development of new preclinical models that simulate some of the physiological, biochemical, and clinical characteristics of the human disease is valuable. The HT-1080 human fibrosarcoma tumour cell line was reported to induce cachexia in mice. Therefore, the purpose of this work was to determine how well the HT-1080 tumour model could recapitulate human cachexia and to examine its technical performance. Furthermore, the efficacy of ghrelin receptor activation via anamorelin treatment was evaluated, because it is one of few clinically validated mechanisms. METHODS Female severe combined immunodeficient mice were implanted subcutaneously or heterotopically (renal capsule) with HT-1080 tumour cells. The cachectic phenotype was evaluated during tumour development, including body weight, body composition, food intake, muscle function (force and fatigue), grip strength, and physical activity measurements. Heterotopic and subcutaneous tumour histology was also compared. Energy balance was evaluated at standard and thermoneutral housing temperatures in the subcutaneous model. The effect of anamorelin (ghrelin analogue) treatment was also examined. RESULTS The HT-1080 tumour model had excellent technical performance and was reproducible across multiple experimental conditions. Heterotopic and subcutaneous tumour cell implantation resulted in similar cachexia phenotypes independent of housing temperature. Tumour weight and histology was comparable between both routes of administration with minimal inflammation. Subcutaneous HT-1080 tumour-bearing mice presented with weight loss (decreased fat mass and skeletal muscle mass/fibre cross-sectional area), reduced food intake, impaired muscle function (reduced force and grip strength), and decreased spontaneous activity and voluntary wheel running. Key circulating inflammatory biomarkers were produced by the tumour, including growth differentiation factor 15, Activin A, interleukin 6, and TNF alpha. Anamorelin prevented but did not reverse anorexia and weight loss in the subcutaneous model. CONCLUSIONS The subcutaneous HT-1080 tumour model displays many of the perturbations of energy balance and physical performance described in human cachexia, consistent with the production of key inflammatory factors. Anamorelin was most effective when administered early in disease progression. The HT-1080 tumour model is valuable for studying potential therapeutic targets for the treatment of cachexia.
Collapse
Affiliation(s)
- Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | | - Jeonifer Garren
- Biostatistics, Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
17
|
Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metab 2020; 32:938-950.e6. [PMID: 33207247 DOI: 10.1016/j.cmet.2020.10.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Platinum-based cancer therapy is restricted by dose-limiting side effects and is associated with elevation of growth differentiation factor 15 (GDF-15). But whether this elevation contributes to such side effects has been unclear. Here, we explored the effects of GDF-15 blockade on platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and/or nonhuman primate models. We found that circulating GDF-15 is higher in subjects with cancer receiving platinum-based chemotherapy and is positively associated with weight loss in colorectal cancer (NCT00609622). Further, chemotherapy agents associated with high clinical emetic score induce circulating GDF-15 and weight loss in mice. Platinum-based treatment-induced anorexia and weight loss are attenuated in GDF-15 knockout mice, while GDF-15 neutralization with the monoclonal antibody mAB1 improves survival. In nonhuman primates, mAB1 treatment attenuates anorexia and emesis. These results suggest that GDF-15 neutralization is a potential therapeutic approach to alleviate chemotherapy-induced side effects and improve the quality of life.
Collapse
Affiliation(s)
- Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Donald Bennett
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Roberto A Calle
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susie Collins
- Biostatistics, Early Clinical Development, Pfizer R&D UK Limited, Ramsgate Road, Sandwich, Kent, UK
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Tao He
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Alison Joyce
- Biomedicine Design, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Matthew Lambert
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Laura Lin
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Betty Pettersen
- Drug Safety Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Michelle Rossulek
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Gregory Weber
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| |
Collapse
|
18
|
Anker MS, von Haehling S, Springer J. Blocking myostatin: muscle mass equals muscle strength? J Cachexia Sarcopenia Muscle 2020; 11:1396-1398. [PMID: 33340286 PMCID: PMC7749583 DOI: 10.1002/jcsm.12647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Markus S Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology (CVK), Charité University Medicine Berlin, Berlin, Germany.,Department of Cardiology (CBF), Charité University Medicine Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center and German Center for Cardiovascular Research (DZHK) partner site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|