1
|
Tsitkanou S, Koopmans P, Peterson C, Cabrera AR, Muhyudin R, Morena F, Khadgi S, Schrems ER, Washington TA, Murach KA, Greene NP. Myocellular adaptations to short-term weighted wheel-running exercise are largely conserved during C26-tumour induction in male and female mice. Exp Physiol 2025. [PMID: 40275593 DOI: 10.1113/ep092504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
This study investigated whether performing a translatable murine model of concurrent training after tumour induction affects adaptations in juvenile male and female tumour-bearing mice. Male and female Balb/c mice were injected bilaterally with colon-26 adenocarcinoma (C26) cells or PBS at 8 weeks of age. Half the mice then performed 24 days of voluntary wheel running with progressively increased load (PoWeR training), whereas the rest remained sedentary. Deuterium oxide-based protein synthesis, muscle fibre-type composition and size, protein turnover and mitochondrial markers were assessed 25 days after tumour induction. Average gastrocnemius muscle fibre size was smaller with PoWeR regardless of tumour in males and females, concomitant with a pronounced faster-to-slower fibre-type transition. In male tumour-bearing mice, PoWeR training resulted in greater Redd1, Murf1 and Pgc1α mRNA content than all the other groups, along with lower overall running volume, food consumption and protein synthesis relative to control animals. Molecular measures followed a similar pattern in tumour-bearing female mice with PoWeR, but food consumption, running volume and muscle protein synthesis were maintained. PoWeR training lowered gonadal fat during cancer cachexia in both sexes, and greater heart weight was observed regardless of tumour presence. A negative correlation was found between tumour weight and running distance. Collectively, PoWeR has a similar effect on muscle cellular phenotype in both sexes regardless of tumour presence, and a training effect in male mice with cancer cachexia was present despite molecular and protein synthesis dysregulation.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pieter Koopmans
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Calvin Peterson
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ruqaiza Muhyudin
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Francielly Morena
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sabin Khadgi
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
2
|
Taguchi A, Kai S, Matsukawa S, Seo H, Egi M. Volatile Anesthetic-Induced Skeletal Muscle Atrophy in Mice and Murine-Derived Myotubes: The Role of the Akt Pathway. Anesth Analg 2025:00000539-990000000-01222. [PMID: 40080425 DOI: 10.1213/ane.0000000000007466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
BACKGROUND Volatile anesthetics are gaining attention as sedatives in intensive care units. Sedation is a significant risk factor for skeletal muscle atrophy and weakness in critically ill patients; however, volatile anesthetics' influence on skeletal muscle atrophy remains unclear. Therefore, we investigated their effects on skeletal muscle mass using a murine-derived muscle cell line and mice. METHODS C2C12 myotubes were exposed to isoflurane or sevoflurane. Myotube diameter was assessed using immunofluorescence. The expression levels of Atrogin-1, MuRF1, and LC3-II and phosphorylation levels of p70 S6K and Akt were analyzed to evaluate protein degradation and synthesis. To determine whether these effects were mediated through the Akt pathway, experiments with insulin-like growth factor 1 (IGF-1) were performed. Furthermore, mice skeletal muscle exposed to isoflurane or sevoflurane were compared with control mice and short-term immobility mice induced by sciatic nerve denervation (DN) or hindlimb suspension (HS). RESULTS Exposure of C2C12 myotubes to 2.8% isoflurane or 5.0% sevoflurane reduced the myotube diameter by 14.4 µm (95% confidential interval [CI], 11.7-17.1, P < .001) and 13.2 µm (95% CI, 10.1-16.2, P < .001), respectively. Exposure to 2.8% isoflurane increased the expressions of Atrogin-1 (2.9-fold [95% CI, 2.1- to 3.8-fold], P < .001), MuRF1 (3.1-fold [95% CI, 2.4- to 3.8-fold], P < .001), and LC3-II (1.6-fold [95% CI, 1.4- to 1.8-fold], P < .001), whereas decreasing phosphorylation of p70 S6K (0.3-fold [95% CI, 0.2- to 0.4-fold], P < .001) and Akt (0.4-fold [95% CI, 0.3- to 0.5-fold], P < .001). Exposure to 5.0% sevoflurane resulted in similar effects. Additionally, IGF-1 counteracted the effects of isoflurane on myotube mass. In mice skeletal muscle, exposure to 1% isoflurane or 1.5% sevoflurane decreased Akt phosphorylation (isoflurane: 0.4-fold [95% CI, 0.1- to 0.8-fold], P = .003; sevoflurane: 0.5-fold [95% CI, 0.4- to 0.6-fold], P = .011) and increased the expression levels of Atrogin-1 (isoflurane: 4.1-fold [95% CI, 3.2- to 5.1-fold], P < .001; sevoflurane: 2.3-fold [95% CI, 1.1- to 3.5-fold], P = .026), MuRF1 (isoflurane: 2.7-fold [95% CI, 1.3- to 4.1-fold], P = .01; sevoflurane: 2.3-fold [95% CI, 1.0- to 3.7-fold], P = .022), and LC3-II (isoflurane: 1.9-fold [95% CI, 0.9- to 3.0-fold], P = .045; sevoflurane: 1.5-fold [95% CI, 1.4- to 1.6-fold], P < .001) while decreasing p70 S6K phosphorylation (isoflurane: 0.5-fold [95% CI, 0.4- to 0.6-fold], P = .013; sevoflurane: 0.7-fold [95% CI, 0.6- to 0.8-fold], P = .008) compared with DN. Similar results were observed when comparing between isoflurane or sevoflurane exposure and HS. CONCLUSIONS Volatile anesthetics induce skeletal muscle atrophy by downregulating the Akt pathway, suggesting they may exacerbate skeletal muscle atrophy beyond immobility effects.
Collapse
Affiliation(s)
- Akihisa Taguchi
- From the Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | |
Collapse
|
3
|
Sklivas AB, Hettinger ZR, Rose S, Mantuano A, Confides AL, Rigsby S, Peelor FF, Miller BF, Butterfield TA, Dupont-Versteegden EE. Responses of skeletal muscle to mechanical stimuli in female rats following and during muscle disuse atrophy. J Appl Physiol (1985) 2025; 138:652-665. [PMID: 39884317 DOI: 10.1152/japplphysiol.00802.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with disuse in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without mechanotherapy or reambulation (RA) with mechanotherapy (RAM) (study 1), or to WB, HS for 7 days, with HS mechanotherapy (HSM) or without mechanotherapy (study 2) to gastrocnemius muscle. Muscle fiber cross-sectional area (CSA) and fiber type, collagen, satellite cell number, and protein synthesis (ksyn) and degradation (kdeg) were assessed. Study 1: muscle weight, but not CSA, was higher in RAM compared with HS, but CSA was higher in RA compared with HS. Myofibrillar ksyn was higher in RA and RAM compared to WB and HS but not different between RA and RAM. Myofibrillar kdeg was lower with mechanotherapy compared to HS. Study 2: muscle weight, CSA, and myofibrillar ksyn and kdeg were not different with mechanotherapy. Collagen content was lower with mechanotherapy but collagen ksyn was not. Mechanotherapy was not associated with changes in fiber type, satellite cell, or myonuclear number in either study. Compared to males, female rats had less muscle loss with HS, which was associated with less loss of myofibrillar ksyn. Recovery from atrophy was associated with higher ksyn in female and lower kdeg in male rats. Female rat muscles do not exhibit a growth response to mechanotherapy with disuse or reambulation. Furthermore, male and female rats show distinct responses to different mechanical stimuli.NEW & NOTEWORTHY This study investigates the response of female rats to mechanical stimulation in both active and passive forms following and during muscle disuse atrophy. New findings indicate that female rats respond to active loading with enhanced muscle regrowth and protein synthesis, whereas passive loading using mechanotherapy did not affect atrophy or recovery of female muscles. Comparison with published data indicates that there are distinct differences in male and female rats in their response to mechanical stimuli.
Collapse
MESH Headings
- Animals
- Female
- Rats
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/pathology
- Hindlimb Suspension/physiology
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/pathology
- Rats, Inbred F344
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Weight-Bearing/physiology
- Collagen/metabolism
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Physical Stimulation/methods
Collapse
Affiliation(s)
- Alexander B Sklivas
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Zachary R Hettinger
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sarah Rose
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alessandra Mantuano
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Amy L Confides
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Timothy A Butterfield
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Department Athletic Training and Clinical Nutrition, College Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Esther E Dupont-Versteegden
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp Physiol 2024; 109:1650-1662. [PMID: 39106083 PMCID: PMC11442788 DOI: 10.1113/ep091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The gradual deterioration of physiological systems with ageing makes it difficult to maintain skeletal muscle mass (sarcopenia), at least partly due to the presence of 'anabolic resistance', resulting in muscle loss. Sarcopenia can be transiently but markedly accelerated through periods of muscle disuse-induced (i.e., unloading) atrophy due to reduced physical activity, sickness, immobilisation or hospitalisation. Periods of disuse are detrimental to older adults' overall quality of life and substantially increase their risk of falls, physical and social dependence, and early mortality. Disuse events induce skeletal muscle atrophy through various mechanisms, including anabolic resistance, inflammation, disturbed proteostasis and mitochondrial dysfunction, all of which tip the scales in favour of a negative net protein balance and subsequent muscle loss. Concerningly, recovery from disuse atrophy is more difficult for older adults than their younger counterparts. Resistance training (RT) is a potent anabolic stimulus that can robustly stimulate muscle protein synthesis and mitigate muscle losses in older adults when implemented before, during and following unloading. RT may take the form of traditional weightlifting-focused RT, bodyweight training and lower- and higher-load RT. When combined with sufficient dietary protein, RT can accelerate older adults' recovery from a disuse event, mitigate frailty and improve mobility; however, few older adults regularly participate in RT. A feasible and practical approach to improving the accessibility and acceptability of RT is through the use of resistance bands. Moving forward, RT must be prescribed to older adults to mitigate the negative consequences of disuse atrophy.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Giulia Coletta
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
6
|
Holmes TC, Popp NM, Hintz CF, Dobrzycki I, Schmitz CJ, Schwichtenberg KA, Gonzalez-Rothi EJ, Sundberg CW, Streeter KA. Sex differences in spontaneous respiratory recovery following chronic C2 hemisection. J Appl Physiol (1985) 2024; 137:166-180. [PMID: 38867665 PMCID: PMC11381122 DOI: 10.1152/japplphysiol.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Respiratory deficits after C2 hemisection (C2Hx) have been well documented through single-sex investigations. Although ovarian sex hormones enable enhanced respiratory recovery observed in females 2 wk post-C2Hx, it remains unknown if sex impacts spontaneous respiratory recovery at chronic time points. We conducted a longitudinal study to provide a comprehensive sex-based characterization of respiratory neuromuscular recovery for 8 wk after C2Hx. We recorded ventilation and chronic diaphragm electromyography (EMG) output in awake, behaving animals, phrenic motor output in anesthetized animals, and performed diaphragm muscle histology in chronically injured male and female rodents. Our results show that females expressed a greater recovery of tidal volume and minute ventilation compared with males during subacute and chronic time points. Eupneic diaphragm EMG amplitude during wakefulness and phrenic motor amplitude are similar between sexes at all time points after injury. Our data also suggest that females have a greater reduction in ipsilateral diaphragm EMG amplitude during spontaneous deep breaths (e.g., sighs) compared with males. Finally, we show evidence for atrophy and remodeling of the fast, fatigable fibers ipsilateral to injury in females, but not in males. To our knowledge, the data presented here represent the first study to report sex-dependent differences in spontaneous respiratory recovery and diaphragm muscle morphology following chronic C2Hx. These data highlight the need to study both sexes to inform evidence-based therapeutic interventions in respiratory recovery after spinal cord injury (SCI).NEW & NOTEWORTHY In response to chronic C2 hemisection, female rodents display increased tidal volume during eupneic breathing compared with males. Females show a greater reduction in diaphragm electromyography (EMG) amplitude during spontaneous deep breaths (e.g., sighs) and atrophy and remodeling of fast, fatigable diaphragm fibers. Given that most rehabilitative interventions occur in the subacute to chronic stages of injury, these results highlight the importance of considering sex when developing and evaluating therapeutics after spinal cord injury.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Nicole M Popp
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Carley F Hintz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Isabell Dobrzycki
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Carolyn J Schmitz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kaylyn A Schwichtenberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
| | - Christopher W Sundberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
7
|
Oliveira AN, Memme JM, Wong J, Hood DA. Dimorphic effect of TFE3 in determining mitochondrial and lysosomal content in muscle following denervation. Skelet Muscle 2024; 14:7. [PMID: 38643162 PMCID: PMC11031958 DOI: 10.1186/s13395-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Muscle atrophy is a common consequence of the loss of innervation and is accompanied by mitochondrial dysfunction. Mitophagy is the adaptive process through which damaged mitochondria are removed via the lysosomes, which are regulated in part by the transcription factor TFE3. The role of lysosomes and TFE3 are poorly understood in muscle atrophy, and the effect of biological sex is widely underreported. METHODS Wild-type (WT) mice, along with mice lacking TFE3 (KO), a transcriptional regulator of lysosomal and autophagy-related genes, were subjected to unilateral sciatic nerve denervation for up to 7 days, while the contralateral limb was sham-operated and served as an internal control. A subset of animals was treated with colchicine to capture mitophagy flux. RESULTS WT females exhibited elevated oxygen consumption rates during active respiratory states compared to males, however this was blunted in the absence of TFE3. Females exhibited higher mitophagy flux rates and greater lysosomal content basally compared to males that was independent of TFE3 expression. Following denervation, female mice exhibited less muscle atrophy compared to male counterparts. Intriguingly, this sex-dependent muscle sparing was lost in the absence of TFE3. Denervation resulted in 45% and 27% losses of mitochondrial content in WT and KO males respectively, however females were completely protected against this decline. Decreases in mitochondrial function were more severe in WT females compared to males following denervation, as ROS emission was 2.4-fold higher. In response to denervation, LC3-II mitophagy flux was reduced by 44% in females, likely contributing to the maintenance of mitochondrial content and elevated ROS emission, however this response was dysregulated in the absence of TFE3. While both males and females exhibited increased lysosomal content following denervation, this response was augmented in females in a TFE3-dependent manner. CONCLUSIONS Females have higher lysosomal content and mitophagy flux basally compared to males, likely contributing to the improved mitochondrial phenotype. Denervation-induced mitochondrial adaptations were sexually dimorphic, as females preferentially preserve content at the expense of function, while males display a tendency to maintain mitochondrial function. Our data illustrate that TFE3 is vital for the sex-dependent differences in mitochondrial function, and in determining the denervation-induced atrophy phenotype.
Collapse
Affiliation(s)
- Ashley N Oliveira
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Jonathan M Memme
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Jenna Wong
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
8
|
Laskin GR, Cabrera AR, Greene NP, Tomko RJ, Vied C, Gordon BS. The mechanosensitive gene arrestin domain containing 2 regulates myotube diameter with direct implications for disuse atrophy with aging. Am J Physiol Cell Physiol 2024; 326:C768-C783. [PMID: 38314723 PMCID: PMC11193484 DOI: 10.1152/ajpcell.00444.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.
Collapse
Affiliation(s)
- Grant R Laskin
- Department of of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Ana Regina Cabrera
- Department of Health, Human Performance and Recreation, Cachexia Research Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Department of Health, Human Performance and Recreation, Cachexia Research Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
9
|
Harrigan ME, Filous AR, Vadala CP, Webb A, Pietrzak M, Sahenk Z, Prüss H, Reiser PJ, Popovich PG, Arnold WD, Schwab JM. Lesion level-dependent systemic muscle wasting after spinal cord injury is mediated by glucocorticoid signaling in mice. Sci Transl Med 2023; 15:eadh2156. [PMID: 38117902 DOI: 10.1126/scitranslmed.adh2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.
Collapse
Affiliation(s)
- Markus E Harrigan
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Angela R Filous
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher P Vadala
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Zarife Sahenk
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65212, USA
| | - Jan M Schwab
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physical Medicine and Rehabilitation, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Sex differences in muscle health in simulated micro- and partial-gravity environments in rats. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:319-328. [PMID: 38314043 PMCID: PMC10831389 DOI: 10.1016/j.smhs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n = 120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Womenʼs Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
13
|
Tsitkanou S, Morena da Silva F, Cabrera AR, Schrems ER, Murach KA, Washington TA, Rosa-Caldwell ME, Greene NP. Biological sex divergence in transcriptomic profiles during the onset of hindlimb unloading-induced atrophy. Am J Physiol Cell Physiol 2023; 325:C1276-C1293. [PMID: 37746697 PMCID: PMC10861149 DOI: 10.1152/ajpcell.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
14
|
Cabrera AR, Deaver JW, Lim S, Morena da Silva F, Schrems ER, Saling LW, Tsitkanou S, Rosa-Caldwell ME, Wiggs MP, Washington TA, Greene NP. Females display relatively preserved muscle quality compared with males during the onset and early stages of C26-induced cancer cachexia. J Appl Physiol (1985) 2023; 135:655-672. [PMID: 37535708 PMCID: PMC10642509 DOI: 10.1152/japplphysiol.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.
Collapse
Affiliation(s)
- Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
15
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
16
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
17
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
18
|
You W, Liu S, Ji J, Ling D, Tu Y, Zhou Y, Chen W, Valencak TG, Wang Y, Shan T. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha. J Cachexia Sarcopenia Muscle 2023; 14:326-341. [PMID: 36511343 PMCID: PMC9891974 DOI: 10.1002/jcsm.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Jianfei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Defeng Ling
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| |
Collapse
|
19
|
Sy MR, Keefe JA, Sutton JP, Wehrens XHT. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol 2023; 324:H1-H13. [PMID: 36399385 PMCID: PMC9762974 DOI: 10.1152/ajpheart.00611.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Space medicine is key to the human exploration of outer space and pushes the boundaries of science, technology, and medicine. Because of harsh environmental conditions related to microgravity and other factors and hazards in outer space, astronauts and spaceflight participants face unique health and medical challenges, including those related to the heart. In this review, we summarize the literature regarding the effects of spaceflight on cardiac structure and function. We also provide an in-depth review of the literature regarding the effects of microgravity on cardiac calcium handling. Our review can inform future mechanistic and therapeutic studies and is applicable to other physiological states similar to microgravity such as prolonged horizontal bed rest and immobilization.
Collapse
Affiliation(s)
- Mary R Sy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey P Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Meyer GA, Thomopoulos S, Abu-Amer Y, Shen KC. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. eLife 2022; 11:e82016. [PMID: 36508247 PMCID: PMC9873255 DOI: 10.7554/elife.82016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKβ effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKβ was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKβ nor overexpression of caIKKβ significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Departments of Neurology and Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Stavros Thomopoulos
- Departments of Orthopaedic Surgery and Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Department of Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
21
|
Fröhlich A, Diek M, von Haehling S, Anker MS. Furnishing the cachexia landscape: A year of research in JCSM. J Cachexia Sarcopenia Muscle 2022; 13:2763-2771. [PMID: 36510825 PMCID: PMC9745474 DOI: 10.1002/jcsm.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ann‐Kathrin Fröhlich
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
- German Centre for Cardiovascular Research (DZHK), partner site BerlinBerlinGermany
- Division of Cardiology and Metabolism, Department of CardiologyCharité—Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany
| | - Monika Diek
- Division of Cardiology and Metabolism, Department of CardiologyCharité—Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Markus S. Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
- German Centre for Cardiovascular Research (DZHK), partner site BerlinBerlinGermany
- Department of Cardiology (CBF)Charité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
22
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
23
|
Queiroz AL, Dantas E, Ramsamooj S, Murthy A, Ahmed M, Zunica ERM, Liang RJ, Murphy J, Holman CD, Bare CJ, Ghahramani G, Wu Z, Cohen DE, Kirwan JP, Cantley LC, Axelrod CL, Goncalves MD. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat Commun 2022; 13:4633. [PMID: 35941104 PMCID: PMC9360437 DOI: 10.1038/s41467-022-32135-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2022] [Indexed: 12/30/2022] Open
Abstract
Cancer cachexia is a common, debilitating condition with limited therapeutic options. Using an established mouse model of lung cancer, we find that cachexia is characterized by reduced food intake, spontaneous activity, and energy expenditure accompanied by muscle metabolic dysfunction and atrophy. We identify Activin A as a purported driver of cachexia and treat with ActRIIB-Fc, a decoy ligand for TGF-β/activin family members, together with anamorelin (Ana), a ghrelin receptor agonist, to reverse muscle dysfunction and anorexia, respectively. Ana effectively increases food intake but only the combination of drugs increases lean mass, restores spontaneous activity, and improves overall survival. These beneficial effects are limited to female mice and are dependent on ovarian function. In agreement, high expression of Activin A in human lung adenocarcinoma correlates with unfavorable prognosis only in female patients, despite similar expression levels in both sexes. This study suggests that multimodal, sex-specific, therapies are needed to reverse cachexia.
Collapse
Affiliation(s)
- Andre Lima Queiroz
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anirudh Murthy
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Roger J Liang
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jessica Murphy
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Corey D Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Curtis J Bare
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gregory Ghahramani
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Global R&D, Cambridge, MA, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Skeletal muscle deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:68-86. [PMID: 35940691 DOI: 10.1016/j.lssr.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are planning to send humans back to the Lunar surface, in preparation for crewed exploration of Mars. However, the effect of hypogravity on human skeletal muscle is largely unknown. A recently established rodent partial weight-bearing model has been employed to mimic various levels of hypogravity loading and may provide valuable insights to better understanding how human muscle might respond to this environment. The aim of this study was to perform a systematic review regarding the effects of partial weight-bearing on the morphology and function of rodent skeletal muscle. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (partial weight-bearing for ≥1 week), control (full weight-bearing), outcome(s) (skeletal muscle morphology/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. Partial weight-bearing at 20%, 40%, and 70% of full loading caused rapid deconditioning of skeletal muscle morphology and function within the first one to two weeks of exposure. Calf circumference, hindlimb wet muscle mass, myofiber cross-sectional area, front/rear paw grip force, and nerve-stimulated plantarflexion force were reduced typically by medium to very large effects. Higher levels of partial weight-bearing often attenuated deconditioning but failed to entirely prevent it. Species and sex mediated the deconditioning response. Risk of bias was low/unclear for most studies. These findings suggest that there is insufficient stimulus to mitigate muscular deconditioning in hypogravity settings highlighting the need to develop countermeasures for maintaining astronaut/cosmonaut muscular health on the Moon and Mars.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, Massachusetts, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
25
|
Triolo M, Oliveira AN, Kumari R, Hood DA. The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle. Skelet Muscle 2022; 12:13. [PMID: 35690879 PMCID: PMC9188089 DOI: 10.1186/s13395-022-00296-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 12/25/2022] Open
Abstract
Background Aging decreases skeletal muscle mass and quality. Maintenance of healthy muscle is regulated by a balance between protein and organellar synthesis and their degradation. The autophagy-lysosome system is responsible for the selective degradation of protein aggregates and organelles, such as mitochondria (i.e., mitophagy). Little data exist on the independent and combined influence of age, biological sex, and exercise on the autophagy system and lysosome biogenesis. The purpose of this study was to characterize sex differences in autophagy and lysosome biogenesis in young and aged muscle and to determine if acute exercise influences these processes. Methods Young (4–6 months) and aged (22–24 months) male and female mice were assigned to a sedentary or an acute exercise group. Mitochondrial content, the autophagy-lysosome system, and mitophagy were measured via protein analysis. A TFEB-promoter-construct was utilized to examine Tfeb transcription, and nuclear-cytosolic fractions allowed us to examine TFEB localization in sedentary and exercised muscle with age and sex. Results Our results indicate that female mice, both young and old, had more mitochondrial protein than age-matched males. However, mitochondria in the muscle of females had a reduced respiratory capacity. Mitochondrial content was only reduced with age in the male cohort. Young female mice had a greater abundance of autophagy, mitophagy, and lysosome proteins than young males; however, increases were evident with age irrespective of sex. Young sedentary female mice had indices of greater autophagosomal turnover than male counterparts. Exhaustive exercise was able to stimulate autophagic clearance solely in young male mice. Similarly, nuclear TFEB protein was enhanced to a greater extent in young male, compared to young female mice following exercise, but no changes were observed in aged mice. Finally, TFEB-promoter activity was upregulated following exercise in both young and aged muscle. Conclusions The present study demonstrates that biological sex influences mitochondrial homeostasis, the autophagy-lysosome system, and mitophagy in skeletal muscle with age. Furthermore, our data suggest that young male mice have a more profound ability to activate these processes with exercise than in the other groups. Ultimately, this may contribute to a greater remodeling of muscle in response to exercise training in males.
Collapse
Affiliation(s)
- Matthew Triolo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Ashley N Oliveira
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Rita Kumari
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada. .,Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
26
|
Lim S, Deaver JW, Rosa-Caldwell ME, Lee DE, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Washington TA, Fluckey JD, Greene NP. Muscle miR-16 deletion results in impaired insulin sensitivity and contractile function in a sex-dependent manner. Am J Physiol Endocrinol Metab 2022; 322:E278-E292. [PMID: 35068192 PMCID: PMC8897019 DOI: 10.1152/ajpendo.00333.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
27
|
McMillin SL, Minchew EC, Lowe DA, Spangenburg EE. Skeletal muscle wasting: the estrogen side of sexual dimorphism. Am J Physiol Cell Physiol 2022; 322:C24-C37. [PMID: 34788147 PMCID: PMC8721895 DOI: 10.1152/ajpcell.00333.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the past 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate, or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still needs rigorous scientific tools that will allow the community to address critical hypotheses centered around sex hormones. The focus of this review is on female sex hormones, specifically estrogens, and the roles that these hormones and their receptors play in skeletal muscle wasting conditions. With the overall review goal of assembling the current knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.
Collapse
Affiliation(s)
- Shawna L. McMillin
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Everett C. Minchew
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Dawn A. Lowe
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Espen E. Spangenburg
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
28
|
Lim S, Deaver JW, Rosa-Caldwell ME, Haynie WS, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Jansen LT, Dunlap KR, Wiggs MP, Washington TA, Greene NP. Development of metabolic and contractile alterations in development of cancer cachexia in female tumor-bearing mice. J Appl Physiol (1985) 2022; 132:58-72. [PMID: 34762526 PMCID: PMC8747017 DOI: 10.1152/japplphysiol.00660.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer cachexia (CC) results in impaired muscle function and quality of life and is the primary cause of death for ∼20%-30% of patients with cancer. We demonstrated mitochondrial degeneration as a precursor to CC in male mice; however, whether such alterations occur in females is currently unknown. The purpose of this study was to elucidate muscle alterations in CC development in female tumor-bearing mice. Sixty female C57BL/6J mice were injected with PBS or Lewis lung carcinoma at 8 wk of age, and tumors developed for 1, 2, 3, or 4 wk to assess the time course of cachectic development. In vivo muscle contractile function, protein fractional synthetic rate (FSR), protein turnover, and mitochondrial health were assessed. Three- and four-week tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. HT mice exhibited lower soleus, tibialis anterior, and fat weights than PBS mice. HT mice showed lower peak isometric torque and slower one-half relaxation time than PBS mice. HT mice had lower FSR than PBS mice, whereas E3 ubiquitin ligases were greater in HT than in other groups. Bnip3 (mitophagy) and pMitoTimer red puncta (mitochondrial degeneration) were greater in HT mice, whereas Pgc1α1 and Tfam (mitochondrial biogenesis) were lower in HT mice than in PBS mice. We demonstrate alterations in female tumor-bearing mice where HT exhibited greater protein degradation, impaired muscle contractility, and mitochondrial degeneration compared with other groups. Our data provide novel evidence for a distinct cachectic development in tumor-bearing female mice compared with previous male studies.NEW & NOTEWORTHY Our study demonstrates divergent tumor development and tissue wasting within 3- and 4-wk mice, where approximately half the mice developed large tumors and subsequent cachexia. Unlike previous male studies, where metabolic perturbations precede the onset of cachexia, females appear to exhibit protections from the metabolic perturbations and cachexia development. Our data provide novel evidence for divergent cachectic development in tumor-bearing female mice compared with previous male CC studies, suggesting different mechanisms of CC between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Michael P Wiggs
- Mooney Laboratory for Exercise, Nutrition, and Biochemistry, Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Time course of capillary regression and an expression balance between vascular endothelial growth factor-A and thrombospondin-1 in the soleus muscle of hindlimb unloaded rats. Muscle Nerve 2021; 65:350-360. [PMID: 34957570 DOI: 10.1002/mus.27478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Skeletal muscle capillaries regress with disuse; however, information on time-dependent changes in the expression of pro- and anti-angiogenic factors in disused muscle is limited. This study aimed to clarify time-dependent changes in skeletal muscle capillarization, pro-angiogenic vascular endothelial growth factor-A (VEGF-A), and anti-angiogenic thrombospondin-1 (TSP-1) in the soleus muscle of hindlimb unloaded rat. METHODS Eight-week-old male Sprague Dawley rats were randomly divided into four groups corresponding to different hindlimb unloading (HU) duration at 0, 1, 2, and 3 weeks. RESULTS Muscle atrophy and capillary regression worsened in the soleus muscle with longer periods of HU. The VEGF-A protein expression level was lower at week 1 than at week 0. In addition, the value at week 3 was also lower than those at weeks 0, 1, and 2. The TSP-1 protein expression level was higher at week 1 than that at week 0 but was similar at weeks 2 and 3. Moreover, reactive oxygen species, assessed by dihydroethidium fluorescence intensity on cryosection, were higher at weeks 2 and 3 than that at week 0. DISCUSSION Depending on the HU period, VEGF-A and TSP-1 showed different expression patterns. In the early HU phase, TSP-1 may play an important role in capillary regression. However, when HU extends for a longer period, decreased VEGF-A, and/or increased oxidative stress may be more involved in capillary regression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, 4-21 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, Japan
| |
Collapse
|
30
|
Rosa-Caldwell ME, Lim S, Haynie WS, Brown JL, Lee DE, Dunlap KR, Jansen LT, Washington TA, Wiggs MP, Greene NP. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice. J Cachexia Sarcopenia Muscle 2021; 12:2056-2068. [PMID: 34585846 PMCID: PMC8718086 DOI: 10.1002/jcsm.12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Disuse decreases muscle size and is predictive of mortality across multiple pathologies. Detriments to mitochondrial function are hypothesized to underlie disuse-induced muscle atrophy. Little data exist on early mechanisms contributing to onset of these pathologies, nor is it known how they differ between sexes. The purpose of this study was to examine differential and conserved responses to mitochondrial quality control in male and female mice during the development and progression of disuse-induced atrophy. METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb unloaded to induce disuse atrophy for 0 (con), 24, 48, 72, or 168 h. At designated time-points, extensor digitorum longus, gastrocnemius, and soleus muscles were collected for analysis of mitochondrial quality control markers. RESULTS One hundred sixty-eight hours of disuse resulted in ~25% lower oxidative muscle fibre CSA in both male (P = 0.003) and female (P = 0.02) mice without any differences due to disuse in glycolytic fibres. In male mice, 48 h of unloading was sufficient to result in ~67% greater mitochondrial oxidative stress as assessed by the reporter gene pMitoTimer compared with 0 h (P = 0.002), this mitochondrial stress preceded detectable muscle loss. However in female mice, mitochondrial oxidative stress did not occur until 168 h of disuse (~40% greater mitochondrial oxidative stress in 168 h compared with 0 h of disuse, P < 0.0001). Blunted oxidative stress in female mice appeared to coincide with greater inductions of autophagy and mitophagy in female mice (~3-fold greater BNIP3 and ~6-fold greater LC3II/I ratio P < 0.0001 and P = 0.038 respectively). Male mice overall had greater reactive oxygen species (ROS) production compared with female mice. Female mice had a greater induction of ROS within 24 h of disuse (~4-fold greater compared with 0 h, P < 0.0001); whereas male mice did not have greater ROS production until 168 h of disuse (~2-fold greater, P < 0.0001). Although all muscle types exhibited some alterations to mitochondrial quality control, such as increased markers of mitophagy and fission, the soleus muscle in both male and female mice exhibited consistent alterations to various markers of mitochondrial quality. Markers of mitochondrial translation were approximately 30-50% lower within 24 h of unloading in both male and female soleus muscle (P value ranges: <0.0001-0.03). CONCLUSIONS Disuse negatively affects mitochondria differentially between sexes during development of muscle wasting. Acutely, female mice may forgo muscle mass to maintain mitochondrial quality compared with male mice. These differences may contribute to divergent clinical manifestations of atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
31
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
32
|
Mortreux M, Rosa‐Caldwell ME, Stiehl ID, Sung D, Thomas NT, Fry CS, Rutkove SB. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 2021; 9:e15042. [PMID: 34612585 PMCID: PMC8493566 DOI: 10.14814/phy2.15042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Megan E. Rosa‐Caldwell
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Ian D. Stiehl
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Physics and AstronomyDartmouth CollegeHanoverNew HampshireUSA
| | - Dong‐Min Sung
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Nicholas T. Thomas
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher S. Fry
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Seward B. Rutkove
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
33
|
Rosa-Caldwell ME, Mortreux M, Kaiser UB, Sung DM, Bouxsein ML, Dunlap KR, Greene NP, Rutkove SB. The oestrous cycle and skeletal muscle atrophy: Investigations in rodent models of muscle loss. Exp Physiol 2021; 106:2472-2488. [PMID: 34569104 DOI: 10.1113/ep089962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is the oestrous cycle affected during disuse atrophies and, if so, how are oestrous cycle changes related to musculoskeletal outcomes? What is the main finding and its importance? Rodent oestrous cycles were altered during disuse atrophy, which was correlated with musculoskeletal outcomes. However, the oestrous cycle did not appear to be changed by Lewis lung carcinoma, which resulted in no differences in muscle size in comparison to healthy control animals. These findings suggest a relationship between the oestrous cycle and muscle size during atrophic pathologies. ABSTRACT Recent efforts have focused on improving our understanding of female muscle physiology during exposure to muscle atrophic stimuli. A key feature of female rodent physiology is the oestrous cycle. However, it is not known how such stimuli interact with the oestrous cycle to influence muscle health. In this study, we investigated the impact of muscle atrophic stimuli on the oestrous cycle and how these alterations are correlated with musculoskeletal outcomes. A series of experiments were performed in female rodents, including hindlimb unloading (HU), HU followed by 24 h of reloading, HU combined with dexamethasone treatment, and Lewis lung carcinoma. The oestrous cycle phase was assessed throughout each intervention and correlated with musculoskeletal outcomes. Seven or 14 days of HU increased the duration in dioestrus or metoestrus (D/M; low hormones) and was negatively correlated with gastrocnemius mass. Time spent in D/M was also negatively correlated with changes in grip strength and bone density after HU, and with muscle recovery 24 h after the cessation of HU. The addition of dexamethasone strengthened these relationships between time in D/M and reduced musculoskeletal outcomes. However, in animals with Lewis lung carcinoma, oestrous cyclicity did not differ from that of control animals, and time spent in D/M was not correlated with either gastrocnemius mass or tumour burden. In vitro experiments suggested that enhanced protein synthesis induced by estrogen might protect against muscle atrophy. In conclusion, muscle atrophic insults are correlated with changes in the oestrous cycle, which are associated with deterioration in musculoskeletal outcomes. The magnitude of oestrous cycle alterations depends on the atrophic stimuli.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Mao H, Yang Y, Chen L, Li L. 15-PGDH: a potential target for the treatment of muscle atrophy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1254-1256. [PMID: 34195793 DOI: 10.1093/abbs/gmab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hui Mao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
35
|
Rosa-Caldwell ME, Lim S, Haynie WA, Brown JL, Deaver JW, Morena Da Silva F, Jansen LT, Lee DE, Wiggs MP, Washington TA, Greene NP. Female mice may have exacerbated catabolic signalling response compared to male mice during development and progression of disuse atrophy. J Cachexia Sarcopenia Muscle 2021; 12:717-730. [PMID: 33675163 PMCID: PMC8200438 DOI: 10.1002/jcsm.12693] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley A Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - John William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena Da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, USA.,Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|