1
|
Yu C, Jiang L, Long L, Yu H. Atrial fibrillation in cancer patients: Epidemiology, identification and management. Semin Cancer Biol 2025; 111:39-47. [PMID: 39993515 DOI: 10.1016/j.semcancer.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Cancer and cardiovascular disease (CVD) are among the leading causes of death globally, and the rate of coexistence of the two diseases has been increasing in recent years, with the elevation of the susceptible population base in aging societies and the improvement of therapeutic approaches. Atrial fibrillation (AF), as a common type of cancer-related cardiovascular toxicity (CTR-CVT) in oncology patients, is a serious threat to patients' health and may lead to other cardiovascular complications. Therefore, early detection, timely recognition, and effective intervention of AF are essential to maintain long-term survival of tumor survivors. However, the causal mechanisms regarding its association are still inconclusive, and there is no consensus in the clinic on the optimal treatment. In this review, we will integrate existing guidelines and studies to summarize the current state of research on atrial fibrillation in oncology patients in terms of epidemiology, pathophysiological mechanisms, predictive diagnostics, and therapeutic measures, and propose some research directions to be improved. We hope to provide a more comprehensive review and provide assistance in clinical response.
Collapse
Affiliation(s)
- Chengqi Yu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leilei Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liuhua Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huiming Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
2
|
Newman AAC, Dalman JM, Moore KJ. Cardiovascular Disease and Cancer: A Dangerous Liaison. Arterioscler Thromb Vasc Biol 2025; 45:359-371. [PMID: 39781742 PMCID: PMC11864891 DOI: 10.1161/atvbaha.124.319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessie M Dalman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Kathryn J Moore
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Qazi SU, Hamid A, Ansari HUH, Khouri MG, Anker MS, Hall ME, Anker SD, Butler J, Khan MS. Trends in cancer and heart failure related mortality in adult US population: A CDC WONDER database analysis from 1999 to 2020. Am Heart J 2024; 278:170-180. [PMID: 39299631 DOI: 10.1016/j.ahj.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND With the advent of novel chemotherapy, survival of patients with cancer has improved. However, people with cancer have an increased risk of heart failure (HF). Conversely, HF-related mortality may undermine survival among people with cancer. We aim to analyze the trends of mortality in people with HF and cancer in the adult US population. METHODS We conducted an examination of death certificates sourced from the CDC WONDER (Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research) database, from the years 1999 to 2020. Mortality in adults with HF and cancer was assessed. Age-adjusted mortality rates (AAMRs) per 100,000 persons and annual percent change were reported. RESULTS Between 1999 and 2020, 621,783 deaths occurred from HF in people with cancer. The AAMR declined from 16.4 in 1999 to 11.9 in 2017, after which an increase to 14.5 was observed in 2020. Men had consistently higher overall AAMR as compared to women (men = 18.1 vs women = 9.9). Similar AAMR was observed between non-Hispanic (NH) Blacks/African Americans (13.9) and NH Whites (13.3), with lower in American Indian/Alaska Native (9.6) and Hispanics (7.4). Asian/Pacific Islanders reported the lowest AAMR (5.7). The Midwestern region reported the highest AAMR (14.8). We observed the highest AAMR amongst the older population (61.4). CONCLUSION The mortality rates of people with HF and cancer are increasing in the adult U.S. POPULATION This underscores the need for increased screening, aggressive management, and subsequent surveillance of people at risk or with manifested HF in people with cancer.
Collapse
Affiliation(s)
- Shurjeel Uddin Qazi
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Arsalan Hamid
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Michel G Khouri
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Markus S Anker
- Department of Cardiology CBF German Heart Center Charité, DZHK, BCRT, University Medicine Berlin FU and HU, Berlin, Germany
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Stefan D Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitäts medizin Berlin, Germany
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Muhammad Shahzeb Khan
- Baylor Scott and White Research Institute, Dallas, Texas, USA; Division of Cardiology, Baylor Scott and White The Heart Hospital, Plano, TX, USA; Department of Medicine, Baylor College of Medicine, Temple, TX, USA.
| |
Collapse
|
4
|
Sakellakis M, Reet J, Kladas M, Hoge G, Chalkias A, Radulovic M. Cancer-Induced Resting Sinus Tachycardia: An Overlooked Clinical Diagnosis. Oncol Rev 2024; 18:1439415. [PMID: 39156014 PMCID: PMC11327047 DOI: 10.3389/or.2024.1439415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Elevated resting heart rate is frequently observed in cancer patients, and is associated with increased mortality. Although specific chemotherapeutic agents can induce cardiotoxicity, the presence of sinus tachycardia in chemotherapy-naive patients suggests other factors likely contribute to this clinical presentation. Despite its prevalence, cancer-associated resting sinus tachycardia has not been fully recognized and comprehensively described as a separate clinical entity. Secondary effects of cancer, especially structural cardiac changes, secretory factors (inflammatory cytokines), and thromboembolic disease can cause resting tachycardia. Alternatively, rapid heart rate may reflect compensatory mechanisms responding to increased metabolic demands, raised cardiac output states, and even pain. Hence, cancer-associated tachycardia presents a clinical dilemma; acute life-threatening conditions (such as sepsis, pulmonary embolism, etc.) must be ruled out, but cancer itself can explain resting sinus tachycardia and more conservative management can avoid unnecessary testing, cost and patient stress. Furthermore, identification and management of cardiac conditions associated with cancer may improve survival and the quality of life of cancer patients.
Collapse
Affiliation(s)
- Minas Sakellakis
- Department of Medicine, Jacobi Medical Center/North Central Bronx Hospital, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jashan Reet
- Department of Medicine, Jacobi Medical Center/North Central Bronx Hospital, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michail Kladas
- Department of Medicine, Jacobi Medical Center/North Central Bronx Hospital, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gregory Hoge
- Department of Medicine, Jacobi Medical Center/North Central Bronx Hospital, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Outcomes Research Consortium, Cleveland, OH, United States
| | - Miroslav Radulovic
- Department of Medicine, Jacobi Medical Center/North Central Bronx Hospital, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Boire A, Burke K, Cox TR, Guise T, Jamal-Hanjani M, Janowitz T, Kaplan R, Lee R, Swanton C, Vander Heiden MG, Sahai E. Why do patients with cancer die? Nat Rev Cancer 2024; 24:578-589. [PMID: 38898221 PMCID: PMC7616303 DOI: 10.1038/s41568-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Cancer is a major cause of global mortality, both in affluent countries and increasingly in developing nations. Many patients with cancer experience reduced life expectancy and have metastatic disease at the time of death. However, the more precise causes of mortality and patient deterioration before death remain poorly understood. This scarcity of information, particularly the lack of mechanistic insights, presents a challenge for the development of novel treatment strategies to improve the quality of, and potentially extend, life for patients with late-stage cancer. In addition, earlier deployment of existing strategies to prolong quality of life is highly desirable. In this Roadmap, we review the proximal causes of mortality in patients with cancer and discuss current knowledge about the interconnections between mechanisms that contribute to mortality, before finally proposing new and improved avenues for data collection, research and the development of treatment strategies that may improve quality of life for patients.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katy Burke
- University College London Hospitals NHS Foundation Trust and Central and North West London NHS Foundation Trust Palliative Care Team, London, UK
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Theresa Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
| | - Tobias Janowitz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
| | - Rosandra Kaplan
- Paediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lee
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles Swanton
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Parmentier S, Koschmieder S, Henze L, Griesshammer M, Matzdorff A, Bakchoul T, Langer F, Alesci RS, Duerschmied D, Thomalla G, Riess H. Antithrombotic Therapy in Cancer Patients with Cardiovascular Diseases: Daily Practice Recommendations by the Hemostasis Working Party of the German Society of Hematology and Medical Oncology (DGHO) and the Society for Thrombosis and Hemostasis Research (GTH e.V.). Hamostaseologie 2024. [PMID: 39009011 DOI: 10.1055/a-2337-4025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Active cancer by itself but also chemotherapy is associated with an increased risk of cardiovascular disease (CVD) and especially coronary artery disease (CAD) and atrial fibrillation (AF). The frequency of CVD, CAD, and AF varies depending on comorbidities (particularly in older patients), cancer type, and stage, as well as the anticancer therapeutic being taken. Many reports exist for anticancer drugs being associated with CVD, CAD, and AF, but robust data are often lacking. Because of this, each patient needs an individual structured approach concerning thromboembolic and bleeding risk, drug-drug interactions, as well as patient preferences to evaluate the need for anticoagulation therapy and targeting optimal symptom control. Interruption of specific cancer therapy should be avoided to reduce the potential risk of cancer progression. Nevertheless, additional factors like thrombocytopenia and anticoagulation in the elderly and frail patient with cancer cause additional challenges which need to be addressed in daily clinical management. Therefore, the aim of these recommendations is to summarize the available scientific data on antithrombotic therapy (both antiplatelet and anticoagulant therapy) in cancer patients with CVD and in cases of missing data providing guidance for optimal careful decision-making in daily routine.
Collapse
Affiliation(s)
- Stefani Parmentier
- Tumorzentrum, St. Claraspital Tumorzentrum, St. Claraspital, Basel, Basel-Stadt, Switzerland
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
- Department of Internal Medicine II, Hematology, Oncology and Palliative Medicine, Asklepios Hospital Harz, Goslar, Germany
| | - Martin Griesshammer
- University Clinic for Hematology, Oncology, Hemostaseology and Palliative Care, Johannes Wesling Medical Center Minden, University of Bochum, Minden, Germany
| | - Axel Matzdorff
- Department of Internal Medicine II, Asklepios Clinic Uckermark, Schwedt, Germany
| | - Tamam Bakchoul
- Department of Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany
| | - Florian Langer
- Center for Oncology, University Cancer Center Hamburg (UCCH), II Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany
| | - Rosa Sonja Alesci
- IMD Blood Coagulation Center, Hochtaunus/Frankfurt, Bad Homburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Hemostaseology, Angiology and Medical Intensive Care, Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Goetz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanno Riess
- Division of Hematology, Oncology and Tumorimmunology, Department of Medical, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Borovac JA, Cleland JG. Breast cancer and heart failure: don't let the statistics get in the way of the facts. Proc AMIA Symp 2024; 37:802-803. [PMID: 39165812 PMCID: PMC11332623 DOI: 10.1080/08998280.2024.2375690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Josip A. Borovac
- Division of Interventional Cardiology, Cardiovascular Diseases Department, University Hospital of Split (KBC Split), Split, Croatia
- Department of Pathophysiology, School of Medicine, University of Split, Split, Croatia
- University Department of Health Studies, University of Split, Split, Croatia
| | - John G.F. Cleland
- British Heart Foundation Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Dutra JPP, Macedo AVS, Peixoto TFLF, Garcez JDS, Bacchiega BC, Marchi PD, Varela AM, Martins BJA, Silva CMPDDCE, Lopes RD. Cardiology and oncology: a meeting of giants. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e2024S114. [PMID: 38865534 PMCID: PMC11164274 DOI: 10.1590/1806-9282.2024s114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 06/14/2024]
Affiliation(s)
| | | | | | | | | | | | - Alexandre Manoel Varela
- Universitário Mackenzie, Curitiba Hospital, Erasto Gaertner Hospital – Curitiba (PR), Brazil
| | - Bianca Jaccoud Amaral Martins
- Centro de Pesquisa Oncológica, SOS Cardio Hospital, Florianópolis Specialized Oncology Center – Florianópolis (SC), Brazil
| | | | - Renato Delascio Lopes
- Duke University, Duke Clinical Research Institute, School of Medicine – Durham (NC), United States
| |
Collapse
|
9
|
Rivera Boadla ME, Sharma NR, Khan MH, Khurana S, Gulati A, Tan S, Sharma A, Hooda A, K C P. Cancer as an Individual Risk Factor for Heart Failure: A Review of Literature. Cureus 2024; 16:e60592. [PMID: 38894762 PMCID: PMC11185020 DOI: 10.7759/cureus.60592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
The intricate relationship between cancer and cardiovascular diseases (CVD), notably heart failure (HF), is gaining attention in the medical field. This literature review explores the intricate interplay between cancer and CVD, particularly HF, emphasizing their significant impact on global mortality and comorbidity. While preventive measures have contributed to reducing their incidence, challenges persist in predicting and managing cancer-related complications. This review article delves into various risk factors associated with both cancer and HF, including lifestyle factors, genetic predispositions, and immune system dysregulation. It highlights emerging evidence suggesting a direct interaction between cancer and HF, with studies indicating an elevated risk of mortality from cancer in patients with HF and vice versa. Pathological mechanisms such as inflammation, oxidative stress, and tissue hypoxia are implicated in cancer-induced cardiac dysfunction, underscoring the need for comprehensive clinical investigations and ethical considerations in patient care. The review also discusses the potential role of biomarkers in risk assessment, early detection of cardiotoxicity, and understanding common pathophysiological links between cancer and HF, paving the way for multifaceted preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Nava R Sharma
- Internal Medicine, Maimonides Medical Center, New York, USA
- Medicine, Manipal College of Medical Science, Pokhara, NPL
| | | | - Sakshi Khurana
- Radiology, New York Presbyterian-Columbia University Irving Medical Center, New York, USA
| | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Samuel Tan
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anupam Sharma
- Hematology and Oncology, Fortis Hospital, Noida, Noida, IND
| | - Amit Hooda
- Interventional Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Prabal K C
- Internal Medicine, Rasuwa District Hospital, Kathmandu, NPL
| |
Collapse
|
10
|
Wang J, Cai L, Huang G, Wang C, Zhang Z, Xu J. CENPA and BRCA1 are potential biomarkers associated with immune infiltration in heart failure and pan-cancer. Heliyon 2024; 10:e28786. [PMID: 38576566 PMCID: PMC10990859 DOI: 10.1016/j.heliyon.2024.e28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co-expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for expanding our understanding of the etiology and underlying mechanisms of HF and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Lin Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Gang Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Chunbin Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Zhen Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| | - Junbo Xu
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| |
Collapse
|
11
|
Fröhlich AK, Porthun J, Talha KM, Lena A, Hadzibegovic S, Wilkenshoff U, Sonntag F, Nikolski A, Ramer LV, Zeller T, Keller U, Bullinger L, Anker SD, Haverkamp W, von Haehling S, Doehner W, Rauch U, Skurk C, Cleland JGF, Butler J, Coats AJS, Landmesser U, Karakas M, Anker MS. Association of an impaired GH-IGF-I axis with cardiac wasting in patients with advanced cancer. Clin Res Cardiol 2024:10.1007/s00392-024-02400-x. [PMID: 38587563 DOI: 10.1007/s00392-024-02400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Growth hormone (GH) resistance is characterized by high GH levels but low levels of insulin-like growth factor-I (IGF-I) and growth hormone binding protein (GHBP) and, for patients with chronic disease, is associated with the development of cachexia. OBJECTIVES We investigated whether GH resistance is associated with changes in left ventricular (LV) mass (cardiac wasting) in patients with cancer. METHODS We measured plasma IGF-I, GH, and GHBP in 159 women and 148 men with cancer (83% stage III/IV). Patients were grouped by tertile of echocardiographic LVmass/height2 (women, < 50, 50-61, > 61 g/m2; men, < 60, 60-74, > 74 g/m2) and by presence of wasting syndrome with unintentional weight loss (BMI < 24 kg/m2 and weight loss ≥ 5% in the prior 12 months). Repeat echocardiograms were obtained usually within 3-6 months for 85 patients. RESULTS Patients in the lowest LVmass/height2 tertile had higher plasma GH (median (IQR) for 1st, 2nd, and 3rd tertile women, 1.8 (0.9-4.2), 0.8 (0.2-2.2), 0.5 (0.3-1.6) ng/mL, p = 0.029; men, 2.1 (0.8-3.2), 0.6 (0.1-1.7), 0.7 (0.2-1.9) ng/mL, p = 0.003). Among women, lower LVmass was associated with higher plasma IGF-I (68 (48-116), 72 (48-95), 49 (35-76) ng/mL, p = 0.007), whereas such association did not exist for men. Patients with lower LVmass had lower log IGF-I/GH ratio (women, 1.60 ± 0.09, 2.02 ± 0.09, 1.88 ± 0.09, p = 0.004; men, 1.64 ± 0.09, 2.14 ± 0.11, 2.04 ± 0.11, p = 0.002). GHBP was not associated with LVmass. Patients with wasting syndrome with unintentional weight loss had higher plasma GH and GHBP, lower log IGF-I/GH ratio, and similar IGF-I. Overall, GHBP correlated inversely with log IGF-I/GH ratio (women, r = - 0.591, p < 0.001; men, r = - 0.575, p < 0.001). Additionally, higher baseline IGF-I was associated with a decline in LVmass during follow-up (r = - 0.318, p = 0.003). CONCLUSION In advanced cancer, reduced LVmass is associated with increased plasma GH and reduced IGF-I/GH ratio, suggesting increasing GH resistance, especially for patients with wasting syndrome with unintentional weight loss. Higher baseline IGF-I was associated with a decrease in relative LVmass during follow-up.
Collapse
Affiliation(s)
- Ann-Kathrin Fröhlich
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
| | - Jan Porthun
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
- Norwegian University of Science and Technology, Campus Gjøvik, Gjøvik, Norway
| | - Khawaja M Talha
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alessia Lena
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Sara Hadzibegovic
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Wilkenshoff
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
- Berlin Institute of Health, Charité - University Medicine Berlin, Berlin, Germany
| | - Frederike Sonntag
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
| | - Anja Nikolski
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
| | - Luisa Valentina Ramer
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Clinic for Cardiology, University Heart and Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research, Partner Site HH/Kiel/HL, Hamburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | - Stefan D Anker
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology Campus, Virchow Clinic of German Heart Center Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Wilhelm Haverkamp
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology Campus, Virchow Clinic of German Heart Center Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Virchow Clinic, German Heart Center Charité, Berlin, Germany
- Centre for Stroke Research, Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Ursula Rauch
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Carsten Skurk
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
| | - John G F Cleland
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| | | | - Ulf Landmesser
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany
- Berlin Institute of Health, Charité - University Medicine Berlin, Berlin, Germany
| | - Mahir Karakas
- German Centre for Cardiovascular Research, Partner Site HH/Kiel/HL, Hamburg, Germany
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus S Anker
- Charité - University Medicine Berlin corporate member of Free University Berlin and Humboldt-University Berlin, Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care Medicine Campus Benjamin Franklin, German Heart Center Charité, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
12
|
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023; 12:17706-17717. [PMID: 37654192 PMCID: PMC10524052 DOI: 10.1002/cam4.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
SIGNIFICANCE Two of the leading causes of death worldwide are cancer and cardiovascular diseases. Most cancer patients suffer from a metabolic wasting syndrome known as cancer-induced cardiac cachexia, resulting in death in up to 30% of cancer patients. Main symptoms of this disease are severe cardiac muscle wasting, cardiac remodeling, and cardiac dysfunction. Metabolic alterations, increased inflammation, and imbalance of protein homeostasis contribute to the progression of this multifactorial syndrome, ultimately resulting in heart failure and death. Cancer-induced cardiac cachexia is associated with decreased quality of life, increased fatiguability, and decreased tolerance to therapeutic interventions. RECENT ADVANCES While molecular mechanisms of this disease are not fully understood, researchers have identified different stages of progression of this disease, as well as potential biomarkers to detect and monitor the development. Preclinical and clinical studies have shown positive results when implementing certain pharmacological and non-pharmacological therapy interventions. CRITICAL ISSUES There are still no clear diagnostic criteria for cancer-mediated cardiac cachexia and the condition remains untreated, leaving cancer patients with irreversible effects of this syndrome. While traditional cardiovascular therapy interventions, such as beta-blockers, have shown some positive results in preclinical and clinical research studies, recent preclinical studies have shown more successful results with certain non-traditional treatment options that have not been further evaluated yet. There is still no clinical standard of care or approved FDA drug to aid in the prevention or treatment of cancer-induced cardiac cachexia. This review aims to revisit the still not fully understood pathophysiological mechanisms of cancer-induced cardiac cachexia and explore recent studies using novel treatment strategies. FUTURE DIRECTIONS While research has progressed, further investigations might provide novel diagnostic techniques, potential biomarkers to monitor the progression of the disease, as well as viable pharmacological and non-pharmacological treatment options to increase quality of life and reduce cancer-induced cardiac cachexia-related mortality.
Collapse
Affiliation(s)
- Louisa Tichy
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Traci L. Parry
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
13
|
Bagnall L, Grundmann O, Teolis MG, Yoon SJL. Biomarkers and mechanisms associated with cancer-induced cardiac cachexia: A systematic review. J Cachexia Sarcopenia Muscle 2023. [PMID: 37211636 PMCID: PMC10401532 DOI: 10.1002/jcsm.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Affiliation(s)
- Lisa Bagnall
- James A. Haley Veterans' Hospital & Clinics, Tampa, Florida, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Marilyn G Teolis
- James A. Haley Veterans' Hospital & Clinics, Tampa, Florida, USA
| | - Saun-Joo L Yoon
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Wang X, Song R, Li X, He K, Ma L, Li Y. Bioinformatics analysis of the genes associated with co-occurrence of heart failure and lung cancer. Exp Biol Med (Maywood) 2023; 248:843-857. [PMID: 37073135 PMCID: PMC10484198 DOI: 10.1177/15353702231162081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 04/20/2023] Open
Abstract
Deaths of non-cardiac causes in patients with heart failure (HF) are on the rise, including lung cancer (LC). However, the common mechanisms behind the two diseases need to be further explored. This study aimed to improve understanding on the co-occurrence of LC and HF. In this study, gene expression profiles of HF (GSE57338) and LC (GSE151101) were comprehensively analyzed using the Gene Expression Omnibus database. Functional annotation, protein-protein interaction network, hub gene identification, and co-expression analysis were proceeded when the co-differentially expressed genes in HF and LC were identified. Among 44 common differentially expressed genes, 17 hub genes were identified to be associated with the co-occurrence of LC and HF; the hub genes were verified in 2 other data sets. Nine genes, including ALOX5, FPR1, ADAMTS15, ALOX5AP, ANPEP, SULF1, C1orf162, VSIG4, and LYVE1 were selected after screening. Functional analysis was performed with particular emphasis on extracellular matrix organization and regulation of leukocyte activation. Our findings suggest that disorders of the immune system could cause the co-occurrence of HF and LC. They also suggest that abnormal activation of extracellular matrix organization, inflammatory response, and other immune signaling pathways are essential in disorders of the immune system. The validated genes provide new perspectives on the common underlying pathophysiology of HF and LC, and may aid further investigation in this field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Song
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Xin Li
- Cardiovascular Medicine Department, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Kai He
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
15
|
Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice. Cell Rep 2023; 42:111934. [PMID: 36640353 PMCID: PMC9983329 DOI: 10.1016/j.celrep.2022.111934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.
Collapse
|
16
|
Du Y, Wu T. Heart failure and cancer: From active exposure to passive adaption. Front Cardiovasc Med 2022; 9:992011. [PMID: 36304546 PMCID: PMC9592839 DOI: 10.3389/fcvm.2022.992011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
The human body seems like a "balance integrator." On the one hand, the body constantly actively receives various outside stimuli and signals to induce changes. On the other hand, several internal regulations would be initiated to adapt to these changes. In most cases, the body could keep the balance in vitro and in vivo to reach a healthy body. However, in some cases, the body can only get to a pathological balance. Actively exposed to unhealthy lifestyles and passively adapting to individual primary diseases lead to a similarly inner environment for both heart failure and cancer. To cope with these stimuli, the body must activate the system regulation mechanism and face the mutual interference. This review summarized the association between heart failure and cancer from active exposure to passive adaption. Moreover, we hope to inspire researchers to contemplate these two diseases from the angle of overall body consideration.
Collapse
Affiliation(s)
- Yantao Du
- Ningbo Institute of Medical Science, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Tao Wu
- Department of Cardiovascular Center, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
17
|
Immune system and sarcopenia: Presented relationship and future perspective. Exp Gerontol 2022; 164:111823. [DOI: 10.1016/j.exger.2022.111823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
18
|
Guha A, Fradley MG, Dent SF, Weintraub NL, Lustberg MB, Alonso A, Addison D. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: a SEER-Medicare analysis. Eur Heart J 2022; 43:300-312. [PMID: 34791123 PMCID: PMC8914878 DOI: 10.1093/eurheartj/ehab745] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS The national incidence, risk factors, and associated mortality of atrial fibrillation (AF) in breast cancer patients are unknown. METHODS AND RESULTS Using the Surveillance, Epidemiology, and End Results-Medicare-linked database, we identified females, ≥66 years old, with a new primary diagnosis of breast cancer from 2007 through 2014. These patients were individually matched 1:1 to Medicare enrolees without cancer, and each pair was followed for 1 year to identify a primary outcome of AF. Cumulative incidence was calculated using competing risk survival statistics. Following this, identifying risk factors of AF among breast cancer patients was conducted using the adjusted Cox proportional hazards model. Finally, Kaplan-Meier methods and adjusted Cox proportional hazards modelling were performed to estimate mortality in breast cancer patients with incident and prevalent AF. This study included 85 423 breast cancer patients. Among these 9425 (11.0%) had AF diagnosis prior to the breast cancer diagnosis. New-onset AF was diagnosed in 2993 (3.9%) patients in a 1-year period after the breast cancer diagnosis [incidence 3.3%, 95% confidence interval (CI) 3.0-3.5%, at 1 year; higher rate in the first 60 days (0.6%/month)]. Comparatively, the incidence of new-onset AF in matched non-cancer controls was 1.8% (95% CI 1.6-2.0%). Apart from traditional demographic and cardiovascular risk factors, breast cancer stage was strongly associated with the development of AF [American Joint Committee on Cancer (AJCC) Stage II/III/IV vs. I: adjusted hazard ratio (aHR) 1.51/2.63/4.21, respectively]. New-onset AF after breast cancer diagnosis (aHR 3.00) is associated with increased 1-year cardiovascular mortality. CONCLUSION AF incidence is significantly higher in women after a breast cancer diagnosis. Higher breast cancer stages at diagnos are significantly associated with a higher risk of AF. New-onset AF in the new breast cancer diagnosis setting increases 1-year cardiovascular mortality but not breast cancer-related mortality. KEY QUESTION What are the incidence, prevalence, risk factors and mortality outcomes of atrial fibrillation (AF) in a multi-ethnic representative United States cohort of breast cancer patients? KEY FINDING Annual incidence for AF is 3.9% with highest rate in the first 60 days after cancer diagnosis. Cancer stage and grade are the strongest risk factors for AF. New onset AF after breast cancer increases all-cause and cardiovascular mortality. TAKE HOME MESSAGE AF incidence is higher in breast cancer patients and is associated with later stage and grade at diagnosis of breast cancer. Involving cardio-oncology in those who develop AF after cancer diagnosis should be encouraged to improve their cardiovascular and overall prognosis.
Collapse
Affiliation(s)
- Avirup Guha
- Department of Medicine, Case Western Reserve
University, 11100 Euclid Ave, Cleveland, OH
44106, USA
- Cardio-Oncology Program, Division of Cardiology, The
Ohio State University Medical Center, 452 W. 10th Ave. Columbus,
OH 43210, USA
- Department of Medicine, Division of Cardiology, and
Vascular Biology Center, Medical College of Georgia at Augusta
University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Michael G Fradley
- Cardio-Oncology Program, Division of Cardiology,
Department of Internal Medicine, University of Pennsylvania, 3400
Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Susan F Dent
- Duke Cancer Institute, Duke
University, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710,
USA
| | - Neal L Weintraub
- Department of Medicine, Division of Cardiology, and
Vascular Biology Center, Medical College of Georgia at Augusta
University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Maryam B Lustberg
- Breast Cancer Center, Smilow Cancer Hospital, Yale
University, 35 Park St, New Haven, CT 06511, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public
Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322,
USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The
Ohio State University Medical Center, 452 W. 10th Ave. Columbus,
OH 43210, USA
- Division of Cancer Prevention and Control,
Department of Internal Medicine, College of Medicine, The Ohio State
University, 1590 N High St Suite 525, Columbus, OH 43201, USA
| |
Collapse
|
19
|
Boyle DA. Contemporary Insights into Cancer Cachexia for Oncology Nurses. Asia Pac J Oncol Nurs 2021; 8:462-470. [PMID: 34527776 PMCID: PMC8420918 DOI: 10.4103/apjon.apjon-2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Cachexia is a complex, multiorgan phenomenon targeting skeletal muscle resulting from systemic metabolic imbalances. Multifocal in nature, It's ultimate outcome is significant muscle degradation and loss of adipose tissue exhibited as the "wasting syndrome" which is associated with significant functional decline. Currently, there are no approved biomarkers for screening nor therapeutic options to manage cancer cachexia. Furthermore, multiple psychosocial sequelae characterize the patient and family coping paradigm. Heightened education about the pathophysiology of cancer cachexia and awareness of intra-familial emotional distress can enhance oncology nurses' advocacy about, and attentiveness to, this common manifestation of advanced cancer.
Collapse
|
20
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
21
|
Anker MS, Sanz AP, Zamorano JL, Mehra MR, Butler J, Riess H, Coats AJS, Anker SD. Advanced cancer is also a heart failure syndrome: a hypothesis. J Cachexia Sarcopenia Muscle 2021; 12:533-537. [PMID: 33734609 PMCID: PMC8200419 DOI: 10.1002/jcsm.12694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We present the hypothesis that advanced stage cancer is also a heart failure syndrome. It can develop independently of or in addition to cardiotoxic effects of anti-cancer therapies. This includes an increased risk of ventricular arrhythmias. We suggest the pathophysiologic link for these developments includes generalized muscle wasting (i.e. sarcopenia) due to tissue homeostasis changes leading to cardiac wasting associated cardiomyopathy. Cardiac wasting with thinning of the ventricular wall increases ventricular wall stress, even in the absence of ventricular dilatation. In addition, arrhythmias may be facilitated by cellular wasting processes affecting structure and function of electrical cells and conduction pathways. We submit that in some patients with advanced cancer (but not terminal cancer), heart failure therapy or defibrillators may be relevant treatment options. The key points in selecting patients for such therapies may be the predicted life expectancy, quality of life at intervention time, symptomatic burden, and consequences for further anti-cancer therapies. The cause of death in advanced cancer is difficult to ascertain and consensus on event definitions in cancer is not established yet. Clinical investigations on this are called for. Broader ethical considerations must be taken into account when aiming to target cardiovascular problems in cancer patients. We suggest that focused attention to evaluating cardiac wasting and arrhythmias in cancer will herald a further evolution in the rapidly expanding field of cardio-oncology.
Collapse
Affiliation(s)
- Markus S Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin (Campus CBF), Berlin, Germany
| | | | | | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Javed Butler
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hanno Riess
- Department for Hematology, Oncology and Tumor Immunology (Campus CCM), Charite, University Medicine, Berlin, Germany
| | | | - Stefan D Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany
| |
Collapse
|
22
|
Spontaneous Non-Sustained Ventricular Tachycardia and Premature Ventricular Contractions and Their Prognostic Relevance in Patients with Cancer in Routine Care. Cancers (Basel) 2021; 13:cancers13102303. [PMID: 34065780 PMCID: PMC8151948 DOI: 10.3390/cancers13102303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/19/2023] Open
Abstract
Aims: It is largely unknown whether cancer patients seen in routine care show ventricular arrhythmias in 24 h electrocardiograms (ECGs), and whether when they are detected they carry prognostic relevance. Methods and Results: We included 261 consecutive cancer patients that were referred to the department of cardiology for 24 h ECG examination and 35 healthy controls of similar age and sex in the analysis. To reduce selection bias, cancer patients with known left ventricular ejection fraction <45% were not included in the analysis. Non-sustained ventricular tachycardia (NSVT) episodes of either ≥3 and ≥4 beats duration were more frequent in cancer patients than controls (17% vs. 0%, p = 0.0008; 10% vs. 0%, p = 0.016). Premature ventricular contractions (PVCs)/24 h were not more frequent in cancer patients compared to controls (median (IQR), 26 (2-360) vs. 9 (1-43), p = 0.06; ≥20 PVCs 53% vs. 37%, p = 0.07). During follow-up, (up to 7.2 years, median 15 months) of the cancer patients, 158 (61%) died (1-/3-/5-year mortality rates: 45% [95%CI 39-51%], 66% [95%CI 59-73%], 73% [95%CI 64-82%]). Both non-sustained ventricular tachycardia of ≥4 beats and ≥20 PVCs/24 h independently predicted mortality in univariate and multivariate survival analyses, adjusted for all other univariate predictors of mortality as well as relevant clinical factors, including cancer stage and type, performance status (ECOG), prior potentially cardiotoxic anti-cancer drug therapy, coronary artery disease, potassium concentration, and haemoglobin (multivariate adjusted hazard ratios: NSVT ≥4 beats [HR 1.76, p = 0.022], ≥20 PVCs/24 h [HR 1.63, p < 0.0064]). Conclusions: NSVT ≥4 beats and ≥20 PVCs/day seen in routine 24 h ECGs of patients with cancer carry prognostic relevance.
Collapse
|
23
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|