1
|
Guttipatti P, Saadallah N, Ji R, Avula UMR, Goulbourne CN, Wan EY. Quantitative 3D electron microscopy characterization of mitochondrial structure, mitophagy, and organelle interactions in murine atrial fibrillation. J Struct Biol 2024; 216:108110. [PMID: 39009246 PMCID: PMC11381154 DOI: 10.1016/j.jsb.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia, however there is limited understanding of its pathophysiology including the cellular and ultrastructural changes rendered by the irregular rhythm, which limits pharmacological therapy development. Prior work has demonstrated the importance of reactive oxygen species (ROS) and mitochondrial dysfunction in the development of AF. Mitochondrial structure, interactions with other organelles such as sarcoplasmic reticulum (SR) and T-tubules (TT), and degradation of dysfunctional mitochondria via mitophagy are important processes to understand ultrastructural changes due to AF. However, most analysis of mitochondrial structure and interactome in AF has been limited to two-dimensional (2D) modalities such as transmission electron microscopy (EM), which does not fully visualize the morphological evolution of the mitochondria during mitophagy. Herein, we utilize focused ion beam-scanning electron microscopy (FIB-SEM) and perform reconstruction of three-dimensional (3D) EM from murine left atrial samples and measure the interactions of mitochondria with SR and TT. We developed a novel 3D quantitative analysis of FIB-SEM in a murine model of AF to quantify mitophagy stage, mitophagosome size in cardiomyocytes, and mitochondrial structural remodeling when compared with control mice. We show that in our murine model of spontaneous and continuous AF due to persistent late sodium current, left atrial cardiomyocytes have heterogenous mitochondria, with a significant number which are enlarged with increased elongation and structural complexity. Mitophagosomes in AF cardiomyocytes are located at Z-lines where they neighbor large, elongated mitochondria. Mitochondria in AF cardiomyocytes show increased organelle interaction, with 5X greater contact area with SR and are 4X as likely to interact with TT when compared to control. We show that mitophagy in AF cardiomyocytes involves 2.5X larger mitophagosomes that carry increased organelle contents. In conclusion, when oxidative stress overcomes compensatory mechanisms, mitophagy in AF faces a challenge of degrading bulky complex mitochondria, which may result in increased SR and TT contacts, perhaps allowing for mitochondrial Ca2+ maintenance and antioxidant production.
Collapse
MESH Headings
- Animals
- Mitophagy
- Mice
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/pathology
- Myocytes, Cardiac/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mitochondria/ultrastructure
- Mitochondria/metabolism
- Mitochondria/pathology
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Sarcoplasmic Reticulum/pathology
- Mitochondria, Heart/ultrastructure
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Imaging, Three-Dimensional/methods
- Male
- Disease Models, Animal
- Microscopy, Electron, Scanning/methods
Collapse
Affiliation(s)
- Pavithran Guttipatti
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Najla Saadallah
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Ruiping Ji
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Uma Mahesh R Avula
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Medicine, University of Mississippi, Jackson, MS, United States.
| | - Christopher N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
2
|
Ruhparwar A, Osswald A, Kim H, Wakili R, Müller J, Pizanis N, Al-Rashid F, Hendgen-Cotta U, Rassaf T, Kim SJ. Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313688. [PMID: 38685135 DOI: 10.1002/adma.202313688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Reliability of power supply for current implantable electronic devices is a critical issue for longevity and for reducing the risk of device failure. Energy harvesting is an emerging technology, representing a strategy for establishing autonomous power supply by utilizing biomechanical movements in human body. Here, a novel "Twistron energy cell harvester" (TECH), consisting of coiled carbon nanotube yarn that converts mechanical energy of the beating heart into electrical energy, is presented. The performance of TECH is evaluated in an in vitro artificial heartbeat system which simulates the deformation pattern of the cardiac surface, reaching a maximum peak power of 1.42 W kg-1 and average power of 0.39 W kg-1 at 60 beats per minute. In vivo implantation of TECH onto the left ventricular surface in a porcine model continuously generates electrical energy from cardiac contraction. The generated electrical energy is used for direct pacing of the heart as documented by extensive electrophysiology mapping. Implanted modified carbon nanotubes are applicable as a source for harvesting biomechanical energy from cardiac motion for power supply or cardiac pacing.
Collapse
Affiliation(s)
- Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany
| | - Anja Osswald
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Heewoo Kim
- Department of Biomedical Engineering, National Creative Research Initiative Center for Self-Powered Actuation, Hanyang University, Seoul, 04763, South Korea
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Jan Müller
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Nikolaus Pizanis
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Fadi Al-Rashid
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Ulrike Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Seon Jeong Kim
- Department of Biomedical Engineering, National Creative Research Initiative Center for Self-Powered Actuation, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
3
|
Sun SP, Lu YF, Li H, Weng CY, Chen JJ, Lou YJ, Lyu D, Lyu B. AMPK activation alleviated dextran sulfate sodium-induced colitis by inhibiting ferroptosis. J Dig Dis 2023; 24:213-223. [PMID: 37210607 DOI: 10.1111/1751-2980.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Ferroptosis is a newly discovered cell death mode that has been confirmed to occur in the intestinal epithelial cells in ulcerative colitis (UC). In this study we aimed to elucidate the mechanism of ferroptosis and its association with adenosine monophosphate-activated protein kinase (AMPK) in UC. METHODS Gene expression profiles of colonic mucosa (GSE87473) were downloaded. Both human colonic samples and dextran sodium sulfate (DSS)-induced colitis murine model were used. The molecular markers of ferroptosis were detected using western blot and immunohistochemistry. Symptoms, iron abundance, and lipid peroxidation level of the mouse model were measured to evaluate the role of AMPK activation in ferroptosis. RESULTS Both gene and protein expressions of GPX4 and FTH1 were decreased in UC patients compared with the healthy controls. An increased iron abundance and lipid peroxidation level in colon tissues and damaged mitochondria were found in DSS-induced colitis. AMPK expression was decreased in UC patients and correlated with FTH1 and GPX4. Activation of AMPK with metformin inhibited ferroptosis in the colon, improved symptoms, and prolonged the lifespan in DSS-induced colitis mice. CONCLUSIONS Ferroptosis can be observed in colonic tissues in UC. AMPK activation inhibits ferroptosis in murine colitis model, which may act as a potential target for the treatment of colitis.
Collapse
Affiliation(s)
- Shao Peng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Fan Lu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Heng Li
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Chun Yan Weng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jia Jia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yi Jie Lou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Dong Lyu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Bin Lyu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed Pharmacother 2022; 147:112636. [DOI: 10.1016/j.biopha.2022.112636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
|
5
|
Heinen-Weiler J, Hasenberg M, Heisler M, Settelmeier S, Beerlage AL, Doepper H, Walkenfort B, Odersky A, Luedike P, Winterhager E, Rassaf T, Hendgen-Cotta UB. Superiority of focused ion beam-scanning electron microscope tomography of cardiomyocytes over standard 2D analyses highlighted by unmasking mitochondrial heterogeneity. J Cachexia Sarcopenia Muscle 2021; 12:933-954. [PMID: 34120411 PMCID: PMC8350221 DOI: 10.1002/jcsm.12742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.
Collapse
Affiliation(s)
- Jacqueline Heinen-Weiler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Heisler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Beerlage
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hannah Doepper
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Andrea Odersky
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|