1
|
Ding R, Gao L, Wang X, Yang J, Han X, Fei S, Wang J, Zhang X, Wang H, Shang X, Wu L. High-fat diet and chronic restraint stress exacerbate anxiety-depressive behaviors via astrocytic A1 phenotype transformation. Sci Rep 2025; 15:15031. [PMID: 40301496 PMCID: PMC12041363 DOI: 10.1038/s41598-025-99355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Obesity and depression are likely to co-occur. However, there are few reports on the relationship between obesity and depression. We aimed to investigate the effect of high-fat diet combined with chronic restraint stress on depressive-like behaviors, focusing on the phenotypic transformation of astrocytes. Male C57BL/6 mice were randomly divided into four equal groups: control, high-fat diet (HFD), chronic restraint stress (CRS) and HFD + CRS groups. They were subjected to an 8-week high-fat diet and 3-week restraint stress stimulation. In vitro, palmitic acid (PA) and corticosterone (Cort) were used to mimic HFD and CRS respectively on C8-D1A astrocytes. Our results showed that HFD aggravates anxiety and depression-like behaviors and learning and memory deficits induced by CRS, as reflected by sucrose preference, forced swimming test, tail suspension tests, open field test and the Morris water maze. The expression level of C3 protein in the hippocampus of the mice in the HFD + CRS group was three times that of the CON group. HFD combined with CRS significantly inhibited the protein expression of the Wnt/β-catenin signaling pathway. Consistent with the results of animal experiments, the results of the in vitro experiments showed that the protein expressions of A1 astrocytes marker in C8-D1A astrocytes were much higher in the PA + Cort group. And the protein expressions the Wnt/β-catenin signaling pathway-associated proteins were obviously lower in the PA + Cort group. Furthermore, Wnt/β-catenin pathway agonist SKL2001 treatment decreased the A1 astrocytes marker expressions in C8-D1A astrocytes, and improves the anxiety and depression-like behaviors and learning and memory deficits in HFD mice combined with CRS. This study suggested that HFD combined with CRS could promote the transformation of astrocytes into A1 type and the Wnt/β-catenin signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Ran Ding
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Linyin Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Xindi Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Jinxia Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Xuemei Han
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Shuailong Fei
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Jian Wang
- Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiujun Zhang
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Haitao Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| | - Xueliang Shang
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| | - Lei Wu
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| |
Collapse
|
2
|
Vieira ACA, Pinheiro RO, Soares NL, Bezerra MLR, Nascimento DDS, Alves AF, Sousa MCDP, Dutra MLDV, Lima MDS, Donato NR, Aquino JDS. Maternal high-fat diet alters the neurobehavioral, biochemical and inflammatory parameters of their adult female rat offspring. Physiol Behav 2023; 266:114180. [PMID: 37037382 DOI: 10.1016/j.physbeh.2023.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Lipid metabolism dysregulations have been associated with depressive and anxious behaviors which can affect pregnant and lactating individuals, with indications that such changes extend to the offspring. Therefore, the aim of this study was to evaluate the effect of a maternal high-fat diet on the neurobehavioral, biochemical and inflammatory parameters of their adult female offspring. METHODS Wistar rats ± 90 days old were mated. The dams were allocated to consume a control (CTL) or high-fat (HFD) diet during pregnancy and lactation. After weaning, the female offspring from the CTL (N=10) and HFD (N=10) groups received standard chow. The offspring behavioral tests were started at 120 days old. Then, the somatic measures were evaluated followed by euthanasia, histological and biochemical analyses. RESULTS The HFD group had less ambulation and longer immobility time in the open field test compared to the CTL. The HFD group had lower HDL (48.4%) and a higher adiposity (71.8%) and LDL (62.2%) than the CTL. The CTL had a higher organic acid concentration in the intestine, mainly acetic and butyric acids, however the HFD had a higher citric and acetic acid concentration in the brain and ischemic lesion in the hippocampus with a higher NF-κB concentration. CONCLUSION The results demonstrate deleterious effects of a maternal HFD on the neurobehavioral and biochemical parameters of their offspring which may be associated with the role of organic acids and NF-κB in fetal programming.
Collapse
Affiliation(s)
- Anne Caroline Alves Vieira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Rafael Oliveira Pinheiro
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Luiza Rolim Bezerra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Davi Dos Santos Nascimento
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Laboratory of food microbiology and biochemistry, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Carolina de Paiva Sousa
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Brazil; Post Graduate Program in Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Nilcimelly Rodrigues Donato
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande (UFCG), Cuité, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil.
| |
Collapse
|
3
|
Barreto Meichtry L, Silva da Silva G, Londero L, Munir Mustafa Dahleh M, Cardoso Bortolotto V, Machado Araujo S, Aparecida Musachio E, Trivisiol da Silva D, Emanuelli T, Ricardo Sigal Carriço M, Roehrs R, Petri Guerra G, Prigol M. Exposure to trans fat during the developmental period ofDrosophila melanogasteralters the composition of fatty acids in the head and induces depression-like behavior. Neuroscience 2023; 519:10-22. [PMID: 36933760 DOI: 10.1016/j.neuroscience.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
Collapse
Affiliation(s)
- Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Guilherme Silva da Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Larissa Londero
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Elize Aparecida Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Dariane Trivisiol da Silva
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Murilo Ricardo Sigal Carriço
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000.
| |
Collapse
|
4
|
Mitchell AJ, Khambadkone SG, Dunn G, Bagley J, Tamashiro KLK, Fair D, Gustafsson H, Sullivan EL. Maternal Western-style diet reduces social engagement and increases idiosyncratic behavior in Japanese macaque offspring. Brain Behav Immun 2022; 105:109-121. [PMID: 35809877 PMCID: PMC9987715 DOI: 10.1016/j.bbi.2022.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Recent evidence in humans and animals indicates an association between maternal obesity and offspring behavioral outcomes. In humans, increased maternal body mass index has been linked to an increased risk of children receiving a diagnosis of early-emerging neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and/or Autism Spectrum Disorder (ASD). However, a limited number of preclinical studies have examined associations between maternal Western-Style Diet (mWSD) exposure and offspring social behavior. To our knowledge, this is the first study to investigate relationships between mWSD exposure and social behavior in non-human primates. Since aberrant social behavior is a diagnostic criterion for several neurodevelopmental disorders, the current study focuses on examining the influence of maternal nutrition and metabolic state on offspring social behavior in Japanese macaques (Macaca fuscata). We found that mWSD offspring initiated less affiliative social behaviors as well as proximity to a peer. Using path analysis, we found that the association between mWSD consumption and reduced offspring social engagement was statistically mediated by increased maternal interleukin (IL)-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin in the third trimester. Together, these results suggest that NHP offspring exposed to mWSD exhibit behavioral phenotypes similar to what is described in some early-emerging neurodevelopmental disorders. These results provide evidence that mWSD exposure during gestation may be linked to increased risk of neurodevelopmental disorders and provides targets for prevention and intervention efforts.
Collapse
Affiliation(s)
- A J Mitchell
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA
| | - Seva G Khambadkone
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Geoffrey Dunn
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jennifer Bagley
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA
| | - Kellie L K Tamashiro
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Damien Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, Minneapolis, MN, USA
| | - Hanna Gustafsson
- Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; University of Oregon, Department of Human Physiology, Eugene, OR, USA; Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA.
| |
Collapse
|
5
|
Mitchell AJ, Dunn GA, Sullivan EL. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:450-460. [PMID: 34915175 PMCID: PMC9086110 DOI: 10.1016/j.bpsc.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.
Collapse
Affiliation(s)
- A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon.
| |
Collapse
|