1
|
Light emitting diode (LED) as a source of monochromatic light: a novel lighting approach for behaviour, physiology and welfare of poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933914000592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
The importance of illumination in nest site choice and nest characteristics of cavity nesting birds. Sci Rep 2017; 7:1329. [PMID: 28465542 PMCID: PMC5430998 DOI: 10.1038/s41598-017-01430-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Light has a significant impact on many aspects of avian biology, physiology and behaviour. An increasing number of studies show that illumination may positively influences birds' offspring fitness by e.g. acceleration of embryo development, stimulation of skeleton growth or regulation of circadian rhythm. Because nest cavities have especially low illumination, suitable light levels may be especially important for species which nest there. We may therefore expect that birds breeding in relatively dim conditions should prefer brighter nest sites and/or evolve behavioral mechanisms to secure sufficient light levels in the nest. Using nest boxes with modified internal illumination, we experimentally tested whether light regime is a cue for nest site selection of secondary cavity-nesting species. Additionally, we investigated whether nest building strategies are tuned to internal illumination. Our results demonstrate that, nest boxes with elevated illumination were chosen twice as often as dark nest boxes. Moreover, birds built higher nests in dark nest boxes than birds in boxes with elevated illumination, which suggests a mechanism of compensating for low light conditions. Our results provide the first experimental support for the idea that nest site choice and nest building behaviour in cavity-nesting birds are influenced by ambient illumination.
Collapse
|
3
|
Yamashita T, Ono K, Ohuchi H, Yumoto A, Gotoh H, Tomonari S, Sakai K, Fujita H, Imamoto Y, Noji S, Nakamura K, Shichida Y. Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J Biol Chem 2014; 289:3991-4000. [PMID: 24403072 DOI: 10.1074/jbc.m113.514075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Opn5 is one of the recently identified opsin groups that is responsible for nonvisual photoreception in animals. We previously showed that a chicken homolog of mammalian Opn5 (Opn5m) is a Gi-coupled UV sensor having molecular properties typical of bistable pigments. Here we demonstrated that mammalian Opn5m evolved to be a more specialized photosensor by losing one of the characteristics of bistable pigments, direct binding of all-trans-retinal. We first confirmed that Opn5m proteins in zebrafish, Xenopus tropicalis, mouse, and human are also UV-sensitive pigments. Then we found that only mammalian Opn5m proteins lack the ability to directly bind all-trans-retinal. Mutational analysis showed that these characteristics were acquired by a single amino acid replacement at position 168. By comparing the expression patterns of Opn5m between mammals and chicken, we found that, like chicken Opn5m, mammalian Opn5m was localized in the ganglion cell layer and inner nuclear layer of the retina. However, the mouse and primate (common marmoset) opsins were distributed not in the posterior hypothalamus (including the region along the third ventricle) where chicken Opn5m is localized, but in the preoptic hypothalamus. Interestingly, RPE65, an essential enzyme for forming 11-cis-retinal in the visual cycle is expressed near the preoptic hypothalamus of the mouse and common marmoset brain but not near the region of the chicken brain where chicken Opn5m is expressed. Therefore, mammalian Opn5m may work exclusively as a short wavelength sensor in the brain as well as in the retina with the assistance of an 11-cis-retinal-supplying system.
Collapse
Affiliation(s)
- Takahiro Yamashita
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Machado-Nils AV, de Faria LO, Vieira AS, Teixeira SA, Muscará MN, Ferrari EA. Daily cycling of nitric oxide synthase (NOS) in the hippocampus of pigeons (C. livia). J Circadian Rhythms 2013; 11:12. [PMID: 24176048 PMCID: PMC4177212 DOI: 10.1186/1740-3391-11-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Background Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms.
Collapse
Affiliation(s)
- Aline V Machado-Nils
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-970, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A 2010; 107:22084-9. [PMID: 21135214 DOI: 10.1073/pnas.1012498107] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Opn5 (neuropsin) belongs to an independent group separated from the other six groups in the phylogenetic tree of opsins, for which little information of absorption characteristics and molecular properties of the members is available. Here we show that the chicken Opn5 (cOpn5m) is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. The recombinant expression of cOpn5m in HEK 293s cells followed by the addition of 11-cis- and all-trans-retinal produced UV light-absorbing and visible light-absorbing forms, respectively. These forms were interconvertible by UV and visible light irradiations, respectively, indicating that cOpn5m is a bistable pigment. The absorption maxima of these forms were estimated to be 360 and 474 nm, respectively. The GTPγS binding assay clearly showed that the visible light-absorbing form having all-trans-retinal activates Gi type of G protein, whereas no Gt or Gq activation ability was observed. Immunohistochemical studies using an antibody against cOpn5m clearly showed that this pigment is localized within some types of amacrine cells and some cells in the ganglion cell layer of the retinas, the vast majority of cells in the pineal gland and serotonin-positive cells in the paraventricular organ. Because cOpn5m is the only UV-sensitive opsin among the opsins found so far in chicken, this study provides the molecular basis for UV reception in chicken.
Collapse
|
6
|
Leclerc B, Kang SW, Mauro LJ, Kosonsiriluk S, Chaiseha Y, El Halawani ME. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus. J Neuroendocrinol 2010; 22:119-28. [PMID: 20002961 DOI: 10.1111/j.1365-2826.2009.01942.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premammillary nucleus (PMM) has been shown to contain a daily endogenous dual-oscillation in dopamine (DA)/melatonin (MEL) as well as c-fos mRNA expression that is associated with the daily photo-inducible phase of gonad growth in turkeys. In the present study, the expression of clock genes (Bmal1, Clock, Cry1, Cry2, Per2 and Per3) in the PMM was determined under short (8 : 16 h light/dark cycle) and long (16 : 8 h light/dark cycle) photoperiods relative to changes associated with the diurnal rhythm of DA and MEL. Constant darkness (0 : 24 h light/dark cycle) was used to assess the endogenous response of clock genes. In addition, light pulses were given at zeitgeber time (ZT) 8, 14 and 20 to ascertain whether clock gene expression is modulated by light pulse stimulation and therefore has a daily phase-related response. In the PMM, the temporal clock gene expression profiles were similar under short and long photoperiods, except that Per3 gene was phase-delayed by approximately 16 h under long photoperiod. In addition, Cry1 and Per3 genes were light-induced at ZT 14, the photosensitive phase for gonad recrudescence, whereas the Clock gene was repressed. Gene expression in established circadian pacemakers, the visual suprachiasmatic nucleus (vSCN) and the pineal, was also determined. Clock genes in the pineal gland were rhythmic under both photoperiods, and were not altered after light pulses at ZT 14, which suggests that pineal clock genes may not be associated with the photosensitive phase and reproductive activities. In the vSCN, clock gene expression was phase-shifted depending on the photoperiod, with apexes at night under short day length and during the day under long day length. Furthermore, light pulses at ZT 14 induced the Per2 gene, whereas it repressed the Bmal1 gene. Taken together, the changes in clock gene expression observed within the PMM were unique compared to the pineal and vSCN, and were induced by long photoperiod and light during the daily photosensitive phase; stimuli that are also documented to promote reproductive activity. These results show that Cry1 and Per3 are involved in the photic response associated with the PMM neuronal activation and are coincident with an essential circadian mechanism (photosensitive phase) controlling the reproductive neuroendocrine system.
Collapse
Affiliation(s)
- B Leclerc
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
7
|
Turkey retina and pineal gland differentially respond to constant environment. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:907-13. [DOI: 10.1007/s00359-008-0363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/27/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
|
8
|
Circadian genomics of the chick pineal gland in vitro. BMC Genomics 2008; 9:206. [PMID: 18454867 PMCID: PMC2405806 DOI: 10.1186/1471-2164-9-206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 05/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. These properties make the in vitro pineal a particularly useful model for exploring circadian control of gene transcription in a pacemaker tissue, as well as regulation of the transcriptome by primary inputs to the clock (both photic and noradrenergic). RESULTS We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD. We report that a reduced subset of genes was rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. We also investigated the effects of 6-hour pulses of light or of norepinephrine on gene expression in free-running cultures during both subjective day and night. As expected, both light and norepinephrine inhibited melatonin production; however, the two treatments differentially enhanced or suppressed specific sets of genes in a fashion that was dependent upon time of day. CONCLUSION Our combined approach of utilizing a temporal, photic and pharmacological microarray experiment allowed us to identify novel genes linking clock input to clock function within the pineal. We identified approximately 30 rhythmic, light-responsive, NE-insensitive genes with no previously known clock function, which may play a role in circadian regulation of the pineal. These are candidates for future functional genomics experiments to elucidate their potential role in circadian physiology. Further, we hypothesize that the pineal circadian transcriptome is reduced but functionally conserved in vitro, and supports an endogenous role for the pineal in regulating local rhythms in metabolism, immune function, and other conserved pathways.
Collapse
|
9
|
|
10
|
Kawano E, Takahata Y, Oishi T, Ukena K, Tsutsui K, Tamotsu S. Neural Interaction of Gonadotropin-regulating Hormone Immunoreactive Neurons and the Suprachiasmatic Nucleus with the Paraventricular Organ in the Japanese Grass Lizard (Takydromus tachydromoides). Zoolog Sci 2006; 23:277-87. [PMID: 16603821 DOI: 10.2108/zsj.23.277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous study demonstrated that the paraventricular organ (PVO) in the hypothalamus of the Japanese grass lizard (Takydromus tachydromoides) showed immunoreactivity against the light signal-transducing G-protein, transducin. This finding suggested that the PVO was a candidate for the deep-brain photoreceptor in this species. To understand functions of the PVO, we investigated distributions of transducin, serotonin, gonadotropin-releasing hormone (GnRH), and gonadotropin-inhibitory hormone (GnIH) in the lizard's brain. We immunohistochemically confirmed co-localization of transducin and serotonin in PVO neurons that showed structural characteristics of cerebrospinal fluid (CSF)-contacting neurons. GnRH-immunoreactive (ir) cells were localized in the posterior commissure and lateral hypothalamic area. Some of the serotonin-ir fibers extending from the PVO to the lateral hypothalamic area contacted the GnRH-ir cell bodies. GnIH-ir cells were localized in the nucleus accumbens, paraventricular nucleus, and upper medulla, and GnIH-ir fibers from the paraventricular nucleus contacted the lateral processes of serotonin-ir neurons in the PVO. In addition, we found that serotonin-ir fibers from the PVO extended to the suprachiasmatic nucleus (SCN), and the retrograde transport method confirmed the PVO projections to the SCN. These findings suggest that the PVO, by means of innervation mediated by serotonin, plays an important role in the regulation of pituitary function and the biological clock in the Japanese grass lizard.
Collapse
Affiliation(s)
- Emi Kawano
- Graduate School of Humanities and Sciences, Nara Women's University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 2005; 92:158-70. [PMID: 15606905 DOI: 10.1111/j.1471-4159.2004.02874.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.
Collapse
Affiliation(s)
- S S Chaurasia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 2004; 14:638-49. [PMID: 15084278 DOI: 10.1016/j.cub.2004.04.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/26/2004] [Accepted: 02/26/2004] [Indexed: 01/10/2023]
Abstract
BACKGROUND The Drosophila circadian clock is controlled by interlocked transcriptional feedback loops that operate in many neuronal and nonneuronal tissues. These clocks are roughly divided into a central clock, which resides in the brain and is known to control rhythms in locomotor activity, and peripheral clocks, which comprise all other clock tissues and are thought to control other rhythmic outputs. We previously showed that peripheral oscillators are required to mediate rhythmic olfactory responses in the antenna, but the identity and relative autonomy of these peripheral oscillators has not been defined. RESULTS Targeted ablation of lateral neurons by using apoptosis-promoting factors and targeted clock disruption in antennal neurons with newly developed dominant-negative versions of CLOCK and CYCLE show that antennal neurons, but not central clock cells, are necessary for olfactory rhythms. Targeted rescue of antennal neuron oscillators in cyc(01) flies through wild-type CYCLE shows that these neurons are also sufficient for olfaction rhythms. CONCLUSIONS Antennal neurons are both necessary and sufficient for olfaction rhythms, which demonstrates for the first time that a peripheral tissue can function as an autonomous pacemaker in Drosophila. These results reveal fundamental differences in the function and organization of circadian oscillators in Drosophila and mammals and suggest that components of the olfactory signal transduction cascade could be targets of circadian regulation.
Collapse
Affiliation(s)
- Shintaro Tanoue
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204 USA
| | | | | | | | | |
Collapse
|
13
|
Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 2004; 358:1679-700. [PMID: 14561326 PMCID: PMC1693265 DOI: 10.1098/rstb.2003.1303] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.
Collapse
Affiliation(s)
- Peter Ekström
- Institute of Cell and Organism Biology, Zoology Building, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden.
| | | |
Collapse
|
14
|
Youngren O, Chaiseha Y, Al-Zailaie K, Whiting S, Kang SW, El Halawani M. Regulation of prolactin secretion by dopamine at the level of the hypothalamus in the turkey. Neuroendocrinology 2002; 75:185-92. [PMID: 11914590 DOI: 10.1159/000048236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Avian prolactin (PRL) secretion is regulated by vasoactive intestinal peptide (VIP) neurons residing in the infundibular nuclear complex (INF) of the hypothalamus. This VIPergic activity is modulated by stimulatory dopaminergic inputs. Dynorphin, serotonin (5-HT), dopamine (DA) and VIP all appear to stimulate PRL secretion along a hypothalamic pathway, expressing kappa opioid, serotonergic, dopaminergic and VIPergic receptors in succession, with the VIPergic system as the final mediator. Electrical stimulation (ES) within the turkey hypothalamus at the level of the medial preoptic area (POA), the ventromedial hypothalamic nucleus (VMN), the INF or the median eminence (ME) results in the release of PRL. When the selective D(1) DA receptor antagonist SCH-23390 HCl was infused intraventricularly at the rate of 10 nmol/min, ES in the POA or VMN was unable to increase PRL levels, while ES in the INF and ME did increase PRL to the same level as that of controls. These results were interpreted to suggest that the D(1) DA receptors involved in PRL release lie caudally to the VMN and dorsally to the INF. Bilateral microinjections (50 ng) of the D(1) DA receptor agonist SKF-38393 HCl into the POA or VMN failed to produce any increase in PRL, while similar microinjections in the INF increased PRL significantly within 15 min. Bilateral microinjections of the D(1) DA antagonist (50 ng) into the INF blocked the rise in PRL associated with ES in the POA. Bilateral microinjections of a D(2) DA antagonist (50 ng) into the INF failed to block PRL secretion induced by ES in the POA. Tract tracing, using double-label immunocytochemistry, revealed the presence of a monosynaptic dopaminergic pathway projecting from the POA to the INF. These data imply that the only hypothalamic D(1) DA receptors involved in the regulation of avian PRL secretion are those residing within the INF in the same region as the VIP neurons known to be involved in PRL secretion.
Collapse
Affiliation(s)
- Orlan Youngren
- Department of Animal Science, 495 Animal Science/Veterinary Medicine Building, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|