1
|
Kruangkum T, Jaiboon K, Vanichviriyakit R, Sobhon P, Chotwiwatthanakun C. Upregulation of olfactory-related neuropeptide transcripts in male Macrobrachium rosenbergii in correlation to pheromone perception from molting females. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111812. [PMID: 39805527 DOI: 10.1016/j.cbpa.2025.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study. These deduced sequences, along with their conserved domains, serve as signatures of the identified neuropeptides, which were then compared with those found in other crustaceans and insects, whose nucleotide sequences were obtained from the nucleotide database. RT-PCR identified the expressions of the transcripts encoding these neuropeptides in the CNS. In situ hybridization specifically localized these transcripts in olfactory-associated neurons of cluster 9/11 of the deutocerebrum. Quantitative real-time PCR was used to quantify the expressions of the transcripts in response to the female attractants under different co-culture conditions: males with molting females (G1), males with intermolt females (G2), and slAn ablated males with molting females (G3). The transcripts were significantly increased on days 4-8 in the brain (Br) of males in G1 but not in G2 and G3. This suggests that expressions of the transcripts encoding the neuropeptides are associated with the perception of female mating pheromones through the slAn. This study is the first to show that female mating chemicals regulate the expressions and abundance of the olfactory neuropeptides, thus providing valuable insights for manipulation of mating of this species in aquaculture production.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornchanok Jaiboon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand.
| |
Collapse
|
2
|
Kruangkum T, Jaiboon K, Pakawanit P, Saetan J, Pudgerd A, Wannapaiboon S, Chotwiwatthanakun C, Cummins SF, Sobhon P, Vanichviriyakit R. Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii. Cell Tissue Res 2024; 397:125-146. [PMID: 38878176 PMCID: PMC11291661 DOI: 10.1007/s00441-024-03898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/07/2024] [Indexed: 08/03/2024]
Abstract
In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Kornchanok Jaiboon
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Laphyai P, Kruangkum T, Chotwiwatthanakun C, Semchuchot W, Thaijongrak P, Sobhon P, Tsai PS, Vanichviriyakit R. Suppression of a Novel Vitellogenesis-Inhibiting Hormone Significantly Increases Ovarian Vitellogenesis in the Black Tiger Shrimp, Penaeus monodon. Front Endocrinol (Lausanne) 2021; 12:760538. [PMID: 34867802 PMCID: PMC8634883 DOI: 10.3389/fendo.2021.760538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel Crustacean Hyperglycemic Hormone-type II gene (CHH-type II) was identified and biologically characterized in a shrimp, Penaeus monodon. Based on its structure and function, this gene was named P. monodon vitellogenesis-inhibiting hormone (PemVIH). The complete cDNA sequence of PemVIH consisted of 1,022 nt with an open reading frame (ORF) of 339 nt encoding a polypeptide of 112 amino acids. It was classified as a member of the CHH-type II family based on conserved cysteine residues, a characteristically positioned glycine residue, and the absence of CHH precursor-related peptide (CPRP) domain. The deduced mature PemVIH shared the highest sequence similarities with giant river prawn sinus gland peptide A. Unlike P. monodon gonad-inhibiting hormone (PemGIH), PemVIH was expressed only in the brain and ventral nerve cord, but not the eyestalks. Whole mount immunofluorescence using a newly generated PemVIH antiserum detected positive signals in neuronal cluster 9/11 and 17 of the brain, commissural ganglion (CoG), and neuronal clusters of ventral nerve cord. The presence of PemVIH-positive neurons in CoG, a part of stomatogastric nervous system, suggested a potential mechanism for crosstalk between nutritional and reproductive signaling. The role of PemVIH in vitellogenesis was evaluated using RNA interference technique. Temporal knockdown of PemVIH in female subadults resulted in a 3-fold increase in ovarian vitellogenin expression, suggesting an inhibitory role of PemVIH in vitellogenesis. This study provided novel insight into the control of vitellogenesis and additional strategies for improving ovarian maturation in P. monodon without the current harmful practice of eyestalk ablation.
Collapse
Affiliation(s)
- Phaivit Laphyai
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Academic and Curriculum Division, Nakhonsawan Campus, Mahidol University, Nakhonsawan, Thailand
| | - Wanita Semchuchot
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Prawporn Thaijongrak
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Rapeepun Vanichviriyakit,
| |
Collapse
|
4
|
Eap D, Correa S, Ngo-Vu H, Derby CD. Chemosensory Basis of Feeding Behavior in Pacific White Shrimp, Litopenaeus vannamei. THE BIOLOGICAL BULLETIN 2020; 239:115-131. [PMID: 33151752 DOI: 10.1086/710337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractThe Pacific white shrimp, Litopenaeus vannamei, is important as the principal species in the worldwide aquaculture of shrimp. It has also become a model in the study of crustacean biology, especially because it is one of the first decapod crustaceans to have its genome sequenced. This study examined an aspect of the sensory biology of this shrimp that is important in its aquaculture, by describing its peripheral chemical sensors and how they are used in acquiring and consuming food pellets. We used scanning electron microscopy to describe the diversity of sensilla on the shrimp's major chemosensory organs: antennules, antennae, mouthparts, and legs. Using behavioral studies on animals with selective sensory ablations, we then explored the roles that these chemosensory organs play in the shrimp's search for, and acquisition and ingestion of, food pellets. We found that the antennules mediate odor-activated searching for pellets, with both the lateral and medial antennular flagella contributing to this behavior and thus demonstrating that both aesthetasc (olfactory) and distributed chemosensors on the antennules can mediate this behavior. Once the shrimp finds and grasps the food pellet, the antennular chemoreceptors no longer play a role, and then the chemoreceptors on the mouthparts and legs control ingestion of the pellets. This sequence of chemosensory control of feeding in L. vannamei, a dendrobranchiate crustacean with small antennules and an ability to live and feed in both benthic and pelagic environments, is generally similar to that of the better-studied, large-antennuled, benthic reptantian crustaceans, including spiny lobsters (Achelata), clawed lobsters and crayfish (Astacidea), and crabs (Meirua).
Collapse
|
5
|
Nakeim J, Kornthong N, Saetan J, Duangprom S, Sobhon P, Sretarugsa P. Presence of serotonin and its receptor in the central nervous system and ovary and molecular cloning of the novel crab serotonin receptor of the blue swimming crab, Portunus pelagicus. Acta Histochem 2020; 122:151457. [PMID: 31708231 DOI: 10.1016/j.acthis.2019.151457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
Abstract
Serotonin (5-HT) plays pivotal roles in many physiological processes including reproduction of crustaceans, which are mediated 5-HT receptors. The distributions of 5-HT and its receptor have never been explored in Portunus pelagicus. To validate the targets which indirectly indicate the roles of 5-HT in this crab, we have investigated the distribution of 5-HT in the central nervous system (CNS) and ovary using immunohistochemistry and tissue expression of its receptor by RT-PCR. In the brain, 5-HT immunoreactivity (-ir) was detected in clusters 6, 7, 8, 11, 14, 15 and the fibers. In the ventral nerve cord (VNC), 5-HT-ir was detected in pairs of neurons and the fibers connected to the neurons. In the ovary, 5-HT-ir was intense in the oocyte step 1 (Oc1) and Oc2, and its intensity was slightly decreased in Oc3 and Oc4. The 5-HT receptor was molecularly characterized to be type 7, and it was strongly expressed in the eyestalk, brain, VNC, mature ovary and muscle. Due to the presence of 5-HT receptor we suggest that 5-HT acts primarily at the CNS and ovary, thus implicating its role in reproduction especially in the development of oocytes though its exact function in this crab needed to be explored further.
Collapse
Affiliation(s)
- Jirasuda Nakeim
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand.
| | - Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Co-culture of males with late premolt to early postmolt female giant freshwater prawns, Macrobrachium rosenbergii resulted in greater abundances of insulin-like androgenic gland hormone and gonad maturation in male prawns as a result of olfactory receptors. Anim Reprod Sci 2019; 210:106198. [PMID: 31635776 DOI: 10.1016/j.anireprosci.2019.106198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Insulin-like androgenic gland hormone (IAG) controls development of primary and secondary male sex-characteristics in decapod crustaceans. In male giant freshwater prawns, Macrobrachium rosenbergii, the IAG concentration correlates with male reproductive status and aggressiveness. When female prawns are co-cultured with males this can result in male size variations while this variation does not occur when males are cultured in monosex conditions. It was hypothesized that pheromone-like factors from female prawns may affect the abundance of IAG mRNA and protein in co-cultured males which would affect the pattern of sexual maturation of these males. In the present study, late premolt to postmolt females co-cultured with males for 7 days had a greater abundance of MrIAG mRNA transcript in all male phenotypes as well as for the gonad-somatic indexes (GSI). The abundance of MrIAG mRNA gradually increased from days 1 to 7 and using Western blot procedures MrIAG protein also increased in a similar pattern. Furthermore, with use of BrdU labeling, there was an increased cell proliferation in the spermatogenic zone of testicular tubules and in the spermatic duct epithelium during the 1 to 7 day co-culture period when there were increases in MrIAG mRNA and protein. In contrast, these effects were negated if short lateral antennules of males were ablated. Thus, results of the present study provide evidence that there might be female-molting factors which function as important regulators of androgenic gland function and gonadal maturation that were perceived by males via their short lateral antennules which are the olfactory organs.
Collapse
|
7
|
Khornchatri K, Saetan J, Thongbuakaew T, Senarai T, Kruangkum T, Kornthong N, Tinikul Y, Sobhon P. Distribution of abalone egg-laying hormone-like peptide in the central nervous system and reproductive tract of the male mud crab, Scylla olivacea. Acta Histochem 2019; 121:143-150. [PMID: 30497687 DOI: 10.1016/j.acthis.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022]
Abstract
The mud crab, Scylla olivacea, is a high value economic marine animal in Thailand. However, collection of these crabs from natural habitat for local consumption and export has caused rapid population decline. Hence, aquaculture of this species is required and to this measure understanding of endocrine control of their reproduction must be understood. Egg laying hormone (ELH) is a neuropeptide synthesized by the bag cells (neurons) in the abdominal ganglia of Aplysia gastropods. It plays a critical role in controlling egg production and laying in gastropods, and its possible homolog (ELH-like peptide) was reported in the neural and ovarian tissues of prawns and recently in female reproductive tract of the blue swimming crab, Portunus pelagicus. In this study, we have studied the histology of the male reproductive tract in Scylla olivacea which are comprised of anterior testis, posterior testis, early proximal spermatic duct (ePSD), proximal spermatic duct (PSD), middle spermatic duct (MSD) and distal spermatic duct (DSD), by immunohistochemistry, detected an abalone ELH- immunoreactivity (aELH-ir) in epithelium of ducts in posterior testis and epithelium of all parts of spermatic duct. Furthermore, we could detect aELH-ir in neurons of cluster 9, 11, olfactory neuropil (ON) in the brain and in the small neurons located between the third and the fourth thoracic neuropils (T3-T4) and between the fourth and the fifth thoracic neuropils (T4-T5) of thoracic ganglia. Thus, the presence of aELH in male S. olivacea was designated the role of female egg laying behavior in the male mud crab.
Collapse
Affiliation(s)
- Kanjana Khornchatri
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand.
| | - Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
8
|
Langeloh H, Wasser H, Richter N, Bicker G, Stern M. Neuromuscular transmitter candidates of a centipede ( Lithobius forficatus, Chilopoda). Front Zool 2018; 15:28. [PMID: 30123311 PMCID: PMC6090918 DOI: 10.1186/s12983-018-0274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction is the chemical synapse where motor neurons communicate with skeletal muscle fibers. Whereas vertebrates and many invertebrates use acetylcholine as transmitter at the neuromuscular junction, in those arthropods examined up to now, glutamate and GABA are used instead. With respect to taxon sampling in a phylogenetic context, there is, however, only a limited amount of data available, focusing mainly on crustaceans and hexapods, and neglecting other, arthropod groups. Here we investigate the neurotransmitter equipment of neuromuscular synapses of a myriapod, Lithobius forficatus, using immunofluorescence and histochemical staining methods. Results Glutamate and GABA could be found colocalised with synapsin in synaptic boutons of body wall and leg muscles of Lithobius forficatus. Acetylcholinesterase activity as a marker for cholinergic synapses was found abundantly in the central nervous system and also in some peripheral nerves, but not at neuromuscular junctions. Furthermore, a large number of leg sensory neurons displayed GABA-immunofluorescence and was also labeled with an antiserum against the GABA-synthesizing enzyme, glutamate decarboxylase. Conclusions Our data indicate that glutamate and GABA are neurotransmitters at Lithobius forficatus neuromuscular junctions, whereas acetylcholine is very unlikely to play a role here. This is in line with the concept of glutamate as excitatory and GABA as the main inhibitory neuromuscular transmitters in euarthropods. Furthermore, we have, to our knowledge for the first time, localized GABA in euarthropod leg sensory neurons, indicating the possibility that neurotransmitter panel in arthropod sensory systems may be far more extensive than hitherto assumed.
Collapse
Affiliation(s)
- Hendrik Langeloh
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Hannah Wasser
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Nicole Richter
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Gerd Bicker
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Michael Stern
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| |
Collapse
|
9
|
Soonthornsumrith B, Saetan J, Kruangkum T, Thongbuakaew T, Senarai T, Palasoon R, Sobhon P, Sretarugsa P. Three-dimensional organization of the brain and distribution of serotonin in the brain and ovary, and its effects on ovarian steroidogenesis in the giant freshwater prawn, Macrobrachium rosenbergii. INVERTEBRATE NEUROSCIENCE 2018; 18:5. [PMID: 29560546 DOI: 10.1007/s10158-018-0209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6-8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9-13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14-17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2-Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17β (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.
Collapse
Affiliation(s)
| | - Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Mahidol University, Bangkok, 10400, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ronnarong Palasoon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Anatomy Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Muang Ake, Pathumthani, 12000, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Muang, Chonburi, 20131, Thailand
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
11
|
Poljaroen J, Tinikul Y, Tinikul R, Anurucpreeda P, Sobhon P. Leptin-like immunoreactivity in the central nervous system, digestive organs, and gonads of the giant freshwater prawn, Macrobrachium rosenbergii. Acta Histochem 2017. [PMID: 28624121 DOI: 10.1016/j.acthis.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin, a highly conserved adipocyte-derived hormone, plays important roles in a variety of physiological processes, including the control of fat storage and metabolic status which are linked to food intake, energy homeostasis, and reproduction in all vertebrates. In the present study, we hypothesize that leptin is also present in various organs of the fresh water prawns, Macrobrachium rosenbergii. The existence and distribution of a leptin-like peptide in prawn tissues were verified by using Western blotting (WB) and immunohistochemical detection (ID) using primary antibody against human leptin. With WB, a leptin-like peptide, having a molecular weight of 15kDa, was detected in the brain, thoracic ganglia, abdominal ganglia, parts of the gastro-intestinal tract, hepatopancreas, adipocytes and gonads. By ID, leptin immunoreactivity (leptin-ir) was detected in the brain, thoracic ganglia and intersegmental commissural nerve fibers of abdominal ganglia. In the gastrointestinal tract, there was intense leptin-ir in the apical part of the epithelial cells of the cardiac and pyloric parts of the stomach. In the midgut and hindgut, the leptin-ir was detected in epithelial cells and basal cells located near the basal lamina of the epithelium. In addition, there was leptin-ir in the Restzellen cells in the hepatopancreas which produce digestive enzymes. In the ovary, the strong intensity of a leptin-ir was detected in the cytoplasm of middle to late stage oocytes, whereas no positive staining was detected in follicular cells. An intense leptin-ir was detected in spermatocytes and sustentacular cells in the seminiferous tubules in the testes of small and orange claw males. Taken together, the detection of the leptin-ir in several organs implicates the existence of a leptin-like peptide in various organs of the freshwater prawn; and like in vertebrates this peptide may be an important hormonal factor in controlling feeding and reproductive process.
Collapse
|
12
|
Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res 2017; 369:255-271. [PMID: 28389816 DOI: 10.1007/s00441-017-2607-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/20/2017] [Indexed: 10/19/2022]
Abstract
Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.
Collapse
|
13
|
Thongrod S, Changklungmoa N, Chansela P, Siangcham T, Kruangkum T, Suwansa-Ard S, Saetan J, Sroyraya M, Tinikul Y, Wanichanon C, Sobhon P. Characterization and tissue distribution of neuropeptide F in the eyestalk and brain of the male giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res 2016; 367:181-195. [DOI: 10.1007/s00441-016-2538-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|