1
|
Majumdar A, Lad J, Tumanova K, Serra S, Quereshy F, Khorasani M, Vitkin A. Machine learning based local recurrence prediction in colorectal cancer using polarized light imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:052915. [PMID: 38077502 PMCID: PMC10704263 DOI: 10.1117/1.jbo.29.5.052915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Significance Current treatment for stage III colorectal cancer (CRC) patients involves surgery that may not be sufficient in many cases, requiring additional adjuvant systemic therapy. Identification of this latter cohort that is likely to recur following surgery is key to better personalized therapy selection, but there is a lack of proper quantitative assessment tools for potential clinical adoption. Aim The purpose of this study is to employ Mueller matrix (MM) polarized light microscopy in combination with supervised machine learning (ML) to quantitatively analyze the prognostic value of peri-tumoral collagen in CRC in relation to 5-year local recurrence (LR). Approach A simple MM microscope setup was used to image surgical resection samples acquired from stage III CRC patients. Various potential biomarkers of LR were derived from MM elements via decomposition and transformation operations. These were used as features by different supervised ML models to distinguish samples from patients that locally recurred 5 years later from those that did not. Results Using the top five most prognostic polarimetric biomarkers ranked by their relevant feature importances, the best-performing XGBoost model achieved a patient-level accuracy of 86%. When the patient pool was further stratified, 96% accuracy was achieved within a tumor-stage-III sub-cohort. Conclusions ML-aided polarimetric analysis of collagenous stroma may provide prognostic value toward improving the clinical management of CRC patients.
Collapse
Affiliation(s)
- Anamitra Majumdar
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Jigar Lad
- McMaster University, Department of Physics and Astronomy, Hamilton, Ontario, Canada
| | - Kseniia Tumanova
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Stefano Serra
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| | - Fayez Quereshy
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| | - Mohammadali Khorasani
- University of British Columbia, Department of Surgery, Victoria, British Columbia, Canada
| | - Alex Vitkin
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- University of Toronto, Department of Radiation Oncology, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tumanova K, Serra S, Majumdar A, Lad J, Quereshy F, Khorasani M, Vitkin A. Mueller matrix polarization parameters correlate with local recurrence in patients with stage III colorectal cancer. Sci Rep 2023; 13:13424. [PMID: 37591987 PMCID: PMC10435541 DOI: 10.1038/s41598-023-40480-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The peri-tumoural stroma has been explored as a useful source of prognostic information in colorectal cancer. Using Mueller matrix (MM) polarized light microscopy for quantification of unstained histology slides, the current study assesses the prognostic potential of polarimetric characteristics of peri-tumoural collagenous stroma architecture in 38 human stage III colorectal cancer (CRC) patient samples. Specifically, Mueller matrix transformation and polar decomposition parameters were tested for association with 5-year patient local recurrence outcomes. The results show that some of these polarimetric parameters were significantly different (p value < 0.05) for the recurrence versus the no-recurrence patient cohorts (Mann-Whitney U test). MM parameters may thus be prognostically valuable towards improving clinical management/treatment stratification in CRC patients.
Collapse
Affiliation(s)
- Kseniia Tumanova
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Stefano Serra
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Anamitra Majumdar
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jigar Lad
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Fayez Quereshy
- Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Martínez-Cuazitl A, Gómez-García MDC, Hidalgo-Alegria O, Flores OM, Núñez-Gastélum JA, Martínez ESM, Ríos-Cortés AM, Garcia-Solis M, Pérez-Ishiwara DG. Characterization of Polyphenolic Compounds from Bacopa procumbens and Their Effects on Wound-Healing Process. Molecules 2022; 27:molecules27196521. [PMID: 36235058 PMCID: PMC9571823 DOI: 10.3390/molecules27196521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Wounds represent a medical problem that contributes importantly to patient morbidity and to healthcare costs in several pathologies. In Hidalgo, Mexico, the Bacopa procumbens plant has been traditionally used for wound-healing care for several generations; in vitro and in vivo experiments were designed to evaluate the effects of bioactive compounds obtained from a B. procumbens aqueous fraction and to determine the key pathways involved in wound regeneration. Bioactive compounds were characterized by HPLC/QTOF-MS, and proliferation, migration, adhesion, and differentiation studies were conducted on NIH/3T3 fibroblasts. Polyphenolic compounds from Bacopa procumbens (PB) regulated proliferation and cell adhesion; enhanced migration, reducing the artificial scratch area; and modulated cell differentiation. PB compounds were included in a hydrogel for topical administration in a rat excision wound model. Histological, histochemical, and mechanical analyses showed that PB treatment accelerates wound closure in at least 48 h and reduces inflammation, increasing cell proliferation and deposition and organization of collagen at earlier times. These changes resulted in the formation of a scar with better tensile properties. Immunohistochemistry and RT-PCR molecular analyses demonstrated that treatment induces (i) overexpression of transforming growth factor beta (TGF-β) and (ii) the phosphorylation of Smad2/3 and ERK1/2, suggesting the central role of some PB compounds to enhance wound healing, modulating TGF-β activation.
Collapse
Affiliation(s)
- Adriana Martínez-Cuazitl
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, UDEFA-SEDENA, Mexico City 11200, Mexico
| | | | - Oriana Hidalgo-Alegria
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Olivia Medel Flores
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - José Alberto Núñez-Gastélum
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Eduardo San Martín Martínez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, Instituto Politécnico Nacional, Mexico City 11500, Mexico
| | - Ada María Ríos-Cortés
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala de Xicohténcatl 90700, Mexico
| | - Mario Garcia-Solis
- Departamento de Patología, Hospital General de Tláhuac, Mexico City 13250, Mexico
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Correspondence: ; Tel.: +01-55-5538993877 (ext. 07320)
| |
Collapse
|
4
|
Bazin D, Daudon M, Frochot V, Haymann JP, Letavernier E. Foreword to microcrystalline pathologies: combining clinical activity and fundamental research at the nanoscale. CR CHIM 2022. [DOI: 10.5802/crchim.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Lien CH, Chen ZH, Phan QH. Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:087001. [PMID: 36452033 PMCID: PMC9349470 DOI: 10.1117/1.jbo.27.8.087001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Nonenzymatic glycation of collagen covalently attaches an addition of sugar molecules that initially were involved in a reversibly reaction with amino groups on the protein. Due to the ultimate formation of stable irreversible advanced glycation end products, the process of glycation leads to abnormal irreversible cross-linking, which ultimately accumulates with age and/or diabetes in the extracellular matrix, altering its organization. AIM We report the use of dual-retarder Mueller polarimetry in conjunction with phase retardance to differentiate collagen cross-linking in a normal collagen gel matrix from that in tissues with nonenzymatic cross-linking. APPROACH A dual-liquid crystal-based Mueller polarimetry system that involves electronic modulation of polarization state generators (PSGs) was employed to produce all types of polarization states without moving any part and enable detection of the signal directly using a Stokes polarimeter. The linear phase retardance response was obtained for the characterization of the solution and gel forms of collagen using differential Mueller matrix analysis. RESULTS We found that linear phase retardance measurements via differential Mueller matrix polarimetry successfully differentiated collagen gel matrices with different degrees of cross-linking formed by a nonenzymatic glycation process and demonstrated that this technology constitutes a quick and simple modality. CONCLUSIONS This approach has high sensitivity for studying differences in fibrillar cross-linking in glycated collagen. Further, our work suggests that this method of structural analysis has potential clinical diagnostic value owing to its noninvasive and cost-efficient nature.
Collapse
Affiliation(s)
- Chi-Hsiang Lien
- National United University, Department of Mechanical Engineering, Miaoli, Taiwan
| | - Zong-Hong Chen
- National United University, Department of Mechanical Engineering, Miaoli, Taiwan
| | - Quoc-Hung Phan
- National United University, Department of Mechanical Engineering, Miaoli, Taiwan
| |
Collapse
|
6
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
7
|
Lee HR, Saytashev I, Du Le VN, Mahendroo M, Ramella-Roman J, Novikova T. Mueller matrix imaging for collagen scoring in mice model of pregnancy. Sci Rep 2021; 11:15621. [PMID: 34341418 PMCID: PMC8329204 DOI: 10.1038/s41598-021-95020-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Preterm birth risk is associated with early softening of the uterine cervix in pregnancy due to the accelerated remodeling of collagen extracellular matrix. Studies of mice model of pregnancy were performed with an imaging Mueller polarimeter at different time points of pregnancy to find polarimetric parameters for collagen scoring. Mueller matrix images of the unstained sections of mice uterine cervices were taken at day 6 and day 18 of 19-days gestation period and at different spatial locations through the cervices. The logarithmic decomposition of the recorded Mueller matrices mapped the depolarization, linear retardance, and azimuth of the optical axis of cervical tissue. These images highlighted both the inner structure of cervix and the arrangement of cervical collagen fibers confirmed by the second harmonic generation microscopy. The statistical analysis and two-Gaussians fit of the distributions of linear retardance and linear depolarization in the entire images of cervical tissue (without manual selection of the specific regions of interest) quantified the randomization of collagen fibers alignment with gestation time. At day 18 the remodeling of cervical extracellular matrix of collagen was measurable at the external cervical os that is available for the direct optical observations in vivo. It supports the assumption that imaging Mueller polarimetry holds promise for the fast and accurate collagen scoring in pregnancy and the assessment of the preterm birth risk.
Collapse
Affiliation(s)
- Hee Ryung Lee
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | - Ilyas Saytashev
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Vinh Nguyen Du Le
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jessica Ramella-Roman
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA.
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
8
|
Roa C, Du Le VN, Mahendroo M, Saytashev I, Ramella-Roman JC. Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using K-NN and semantic segmentation classification. BIOMEDICAL OPTICS EXPRESS 2021; 12:2236-2249. [PMID: 33996226 PMCID: PMC8086465 DOI: 10.1364/boe.420079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/25/2023]
Abstract
We propose an approach for discriminating fibrillar collagen fibers from elastic fibers in the mouse cervix in Mueller matrix microscopy using convolutional neural networks (CNN) and K-nearest neighbor (K-NN) for classification. Second harmonic generation (SHG), two-photon excitation fluorescence (TPEF), and Mueller matrix polarimetry images of the mice cervix were collected with a self-validating Mueller matrix micro-mesoscope (SAMMM) system. The components and decompositions of each Mueller matrix were arranged as individual channels of information, forming one 3-D voxel per cervical slice. The classification algorithms analyzed each voxel and determined the amount of collagen and elastin, pixel by pixel, on each slice. SHG and TPEF were used as ground truths. To assess the accuracy of the results, mean-square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used. Although the training and testing is limited to 11 and 5 cervical slices, respectively, MSE accuracy was above 85%, SNR was greater than 40 dB, and SSIM was larger than 90%.
Collapse
Affiliation(s)
- Camilo Roa
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- These authors contributed equally
| | - V N Du Le
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
- These authors contributed equally
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ilyas Saytashev
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8 Street, Miami, FL 33199, USA
| | - Jessica C Ramella-Roman
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8 Street, Miami, FL 33199, USA
| |
Collapse
|
9
|
Nishat R, Kumar H. Collagen fibers in oral submucous fibrosis - A polarizing microscopy study using two special stains. INDIAN J PATHOL MICR 2020; 62:537-543. [PMID: 31611436 DOI: 10.4103/ijpm.ijpm_324_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Oral submucous fibrosis (OSMF), a well-recognized oral potentially malignant disorder, results due to increased collagen production and reduced collagen degradation. Aims and Objectives To qualitatively compare the staining properties of collagen in OSMF using two special stains based on their birefringent property using polarizing microscopy. The study also assessed the distribution and orientation of collagen fibers in different grades of OSMF. Materials and Methods A total of 73 subjects with different clinical and histopathological staging of OSMF comprised the study population. Histopathological examination was done using hematoxylin and eosin stain, Van Gieson and picrosirius red. Collagen fibers were analyzed for polarization colors, distribution, and orientation. Results Picrosirius red stained both thick and thin collagen fibers. Irrespective of the histopathological grades reddish orange and yellowish orange were the most predominant colors. Parallel arrangement of fibers was observed when stained with Van Gieson but picrosirius red stained sections showed a majority of parallel type I fibers with perpendicular type III fibers which increased with advancement in the histopathological grade. Yellowish orange and greenish yellow fibers were predominant in the lamina propria, while reddish orange fibers were predominant in the submucosa. Conclusion Picrosirius red was found to be a better stain. Histopathological grading and polarization colors showed no association with each other. Collagen fibers were more thickly and tightly packed in the submucosa indicating that the process of fibrosis began there. The increase in perpendicular type III fibers with advancing histopathological grades suggested their role in fibrosis.
Collapse
Affiliation(s)
- Roquaiya Nishat
- Department of Dentistry, Nalanda Medical College and Hospital, Patna, Bihar, India
| | - Harish Kumar
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Gribble A, Pinkert MA, Westreich J, Liu Y, Keikhosravi A, Khorasani M, Nofech-Mozes S, Eliceiri KW, Vitkin A. A multiscale Mueller polarimetry module for a stereo zoom microscope. Biomed Eng Lett 2019; 9:339-349. [PMID: 31456893 DOI: 10.1007/s13534-019-00116-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023] Open
Abstract
Mueller polarimetry is a quantitative polarized light imaging modality that is capable of label-free visualization of tissue pathology, does not require extensive sample preparation, and is suitable for wide-field tissue analysis. It holds promise for selected applications in biomedicine, but polarimetry systems are often constrained by limited end-user accessibility and/or long-imaging times. In order to address these needs, we designed a multiscale-polarimetry module that easily couples to a commercially available stereo zoom microscope. This paper describes the module design and provides initial polarimetry imaging results from a murine preclinical breast cancer model and human breast cancer samples. The resultant polarimetry module has variable resolution and field of view, is low-cost, and is simple to switch in or out of a commercial microscope. The module can reduce long imaging times by adopting the main imaging approach used in pathology: scanning at low resolution to identify regions of interest, then at high resolution to inspect the regions in detail. Preliminary results show how the system can aid in region of interest identification for pathology, but also highlight that more work is needed to understand how tissue structures of pathological interest appear in Mueller polarimetry images across varying spatial zoom scales.
Collapse
Affiliation(s)
- Adam Gribble
- 1Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael A Pinkert
- 2Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, USA
- 3Department of Medical Physics, University of Wisconsin at Madison, Madison, USA
- 4Morgridge Institute for Research, Madison, WI USA
| | - Jared Westreich
- 1Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Yuming Liu
- 2Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, USA
| | - Adib Keikhosravi
- 2Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, USA
- 4Morgridge Institute for Research, Madison, WI USA
| | | | - Sharon Nofech-Mozes
- 6Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kevin W Eliceiri
- 2Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, USA
- 3Department of Medical Physics, University of Wisconsin at Madison, Madison, USA
- 4Morgridge Institute for Research, Madison, WI USA
| | - Alex Vitkin
- 1Department of Medical Biophysics, University of Toronto, Toronto, Canada
- 7Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- 8Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Kirby MA, Heuerman AC, Yellon SM. Utility of Optical Density of Picrosirius Red Birefringence for Analysis of Cross-Linked Collagen in Remodeling of the Peripartum Cervix for Parturition. INTEGRATIVE GYNECOLOGY AND OBSTETRICS JOURNAL 2018; 1. [PMID: 30175325 DOI: 10.31038/igoj.2018107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report on development of a rapid, quantitative analysis technique of collagen fibers in cross-linked structures to assess remodeling of the cervix during the transition from soft to ripening in preparation for birth. Optical density analysis of picrosirius red stain tissue using circular polarized birefringence light from fixed paraffin-embedded or frozen cervix from pregnant mice during phases of remodeling prior to birth. Data were analyzed using NIH Image J and extended recently to include studies of prepartum cervix in peripartum women. Our results, developed a rapid, consistent, technique to quantify cervical organization. This approach assesses the structure of collagen organization (the principle component of the cervix) and is essential for analysis of experimental outcomes that disrupt cervical morphology in rodent models of preterm birth. The technique, in this report has, for the first time permitted rapid, accurate assessment of the stages that define cervical ripening with large numbers of slides from individual animals. The approach integrates analysis of collagen organization, with distensability and inflammation, processes associated with cervical change before birth. This analysis further holds promise to evaluate other tissues, but also fibrolytic and fibrogenic changes in collagen associated with physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Michael A Kirby
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Departments of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Pediatrics, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| | - Anne C Heuerman
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| | - Steven M Yellon
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Pediatrics, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| |
Collapse
|
12
|
Novikova T. Optical techniques for cervical neoplasia detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1844-1862. [PMID: 29046833 PMCID: PMC5629403 DOI: 10.3762/bjnano.8.186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/09/2017] [Indexed: 05/04/2023]
Abstract
This paper provides an overview of the current research in the field of optical techniques for cervical neoplasia detection and covers a wide range of the existing and emerging technologies. Using colposcopy, a visual inspection of the uterine cervix with a colposcope (a binocular microscope with 3- to 15-fold magnification), has proven to be an efficient approach for the detection of invasive cancer. Nevertheless, the development of a reliable and cost-effective technique for the identification of precancerous lesions, confined to the epithelium (cervical intraepithelial neoplasia) still remains a challenging problem. It is known that even at early stages the neoplastic transformations of cervical tissue induce complex changes and modify both structural and biochemical properties of tissues. The different methods, including spectroscopic (diffuse reflectance spectroscopy, induced fluorescence and autofluorescence spectroscopy, Raman spectroscopy) and imaging techniques (confocal microscopy, optical coherence tomography, Mueller matrix imaging polarimetry, photoacoustic imaging), probe different tissue properties that may serve as optical biomarkers for diagnosis. Both the advantages and drawbacks of these techniques for the diagnosis of cervical precancerous lesions are discussed and compared.
Collapse
Affiliation(s)
- Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, University Paris Saclay, Palaiseau, France
| |
Collapse
|
13
|
Drifka CR, Loeffler AG, Mathewson K, Mehta G, Keikhosravi A, Liu Y, Lemancik S, Ricke WA, Weber SM, Kao WJ, Eliceiri KW. Comparison of Picrosirius Red Staining With Second Harmonic Generation Imaging for the Quantification of Clinically Relevant Collagen Fiber Features in Histopathology Samples. J Histochem Cytochem 2016; 64:519-29. [PMID: 27449741 DOI: 10.1369/0022155416659249] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022] Open
Abstract
Stromal collagen alignment has been shown to have clinical significance in a variety of cancers and in other diseases accompanied by fibrosis. While much of the biological and clinical importance of collagen changes has been demonstrated using second harmonic generation (SHG) imaging in experimental settings, implementation into routine clinical pathology practice is currently prohibitive. To translate the assessment of collagen organization into routine pathology workflow, a surrogate visualization method needs to be examined. The objective of the present study was to quantitatively compare collagen metrics generated from SHG microscopy and commonly available picrosirius red stain with standard polarization microscopy (PSR-POL). Each technique was quantitatively compared with established image segmentation and fiber tracking algorithms using human pancreatic cancer as a model, which is characterized by a pronounced stroma with reorganized collagen fibers. Importantly, PSR-POL produced similar quantitative trends for most collagen metrics in benign and cancerous tissues as measured by SHG. We found it notable that PSR-POL detects higher fiber counts, alignment, length, straightness, and width compared with SHG imaging but still correlates well with SHG results. PSR-POL may provide sufficient and additional information in a conventional clinical pathology laboratory for certain types of collagen quantification.
Collapse
Affiliation(s)
- Cole R Drifka
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin (CRD, AK, WJK, KWE),Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE),,Morgridge Institute for Research, Madison, Wisconsin (CRD, KWE)
| | - Agnes G Loeffler
- Department of Surgical Pathology, University of Wisconsin-Madison, Madison, Wisconsin (AGL),University of Wisconsin Comprehensive Carbone Cancer Center, Madison, Wisconsin (AGL, WAR, SMW, WJK, KWE)
| | - Kara Mathewson
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE)
| | - Guneet Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE)
| | - Adib Keikhosravi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin (CRD, AK, WJK, KWE),Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE)
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE)
| | - Stephanie Lemancik
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin (SL, WAR)
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin (SL, WAR),George M. O'Brien Research Center of Excellence, Madison, Wisconsin (WAR),University of Wisconsin Comprehensive Carbone Cancer Center, Madison, Wisconsin (AGL, WAR, SMW, WJK, KWE)
| | - Sharon M Weber
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin (SMW, WJK),University of Wisconsin Comprehensive Carbone Cancer Center, Madison, Wisconsin (AGL, WAR, SMW, WJK, KWE)
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin (CRD, AK, WJK, KWE),Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE),,Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin (SMW, WJK),University of Wisconsin Comprehensive Carbone Cancer Center, Madison, Wisconsin (AGL, WAR, SMW, WJK, KWE)
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin (CRD, AK, WJK, KWE),Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin (LOCI) (CRD, KM, GM, AK, YL, WJK, KWE),,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, Wisconsin (AGL, WAR, SMW, WJK, KWE),Morgridge Institute for Research, Madison, Wisconsin (CRD, KWE)
| |
Collapse
|
14
|
Mezawa M, Pinto VI, Kazembe MP, Lee WS, McCulloch CA. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB J 2016; 30:3613-3627. [DOI: 10.1096/fj.201600354rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Masaru Mezawa
- Department of PeriodontologyNihon University School of Dentistry at Matsudo Matsudo Japan
| | - Vanessa I. Pinto
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Mwayi P. Kazembe
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Wilson S. Lee
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | | |
Collapse
|