1
|
Kazmi MB, Almutairi HH, Andleeb A, Jabeen R, Mustafa G, Habiba UE, Kazmi SA, Naz F, Qammar N. Mentha longifolia assisted nanostructures: An approach to obliterate microbial biofilms. PLoS One 2024; 19:e0303521. [PMID: 38985793 PMCID: PMC11236100 DOI: 10.1371/journal.pone.0303521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Microbes maneuver strategies to become incessant and biofilms perfectly play a role in scaling up virulence to cause long-lasting infections. The present study was designed to assess the use of an eco-friendly formulation of functionalized silver nanoparticles generated from Mentha longifolia leaf extract (MℓE) for the treatment of biofilm-producing microbes. Nanoparticles synthesized using MℓE as a reducing agent were optimized at different strengths of AgNO3 (1 mM, 2 mM, 3 mM, and 4 mM). Synthesis of M. longifolia silver nanoparticles (MℓAgNPs) was observed spectrophotometrically (450 nm) showing that MℓAgNPs (4 mM) had the highest absorbance. Various techniques e.g., Fourier transforms Infrared spectroscopy (FTIR), Dynamic light scattering (DLS), zeta potential (ZP), X-ray Diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize MℓAgNPs. In the present study, the Kirby-Bauer method revealed 4mM was the most detrimental conc. of MℓAgNPs with MIC and MBC values of 0.62 μg/mL and 1.25 μg/mL, 0.03 μg/mL and 0.078 μg/mL, and 0.07 μg/mL and 0.15 μg/mL against previously isolated and identified clinical strains of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, respectively. Moreover, the MℓAgNP antibiofilm activity was examined via tissue culture plate (TCP) assay that revealed biofilm inhibition of up to 87.09%, 85.6%, 83.11%, and 75.09% against E. coli, P. aeruginosa, K. pneumonia, and S. aureus, respectively. Herbal synthesized silver nanoparticles (MℓAgNPs) tend to have excellent antibacterial and antibiofilm properties and are promising for other biomedical applications involving the extrication of irksome biofilms. For our best knowledge, it is the first study on the use of the green-synthesized silver nanoparticle MℓAgNP as an antibiofilm agent, suggesting that this material has antibiotic, therapeutic, and industrial applications.
Collapse
Affiliation(s)
- Mahwish Batool Kazmi
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ayesha Andleeb
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Raheela Jabeen
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Umm-e- Habiba
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Safdar Abbas Kazmi
- Department of Environmental Science, COMSATS, Abbottabad Campus, Abbottabad, Pakistan
| | - Farah Naz
- Department of Statistics, The Women University Multan, Punjab, Pakistan
| | - Najma Qammar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
2
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Green biosynthesis of berberine-mediated silver nanorods: Their protective and antidiabetic effects in streptozotocin-induced diabetic rats. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Satti SH, Raja NI, Ikram M, Oraby HF, Mashwani ZUR, Mohamed AH, Singh A, Omar AA. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules 2022; 27:4274. [PMID: 35807519 PMCID: PMC9268011 DOI: 10.3390/molecules27134274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV-Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L-1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L-1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L-1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L-1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L-1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.
Collapse
Affiliation(s)
- Seema Hassan Satti
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Muhammad Ikram
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Hesham F. Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.I.R.); (M.I.); (Z.-U.-R.M.)
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Ajit Singh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia;
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center (CREC), Institute of Food and Agricultural Sciences (UF/IFAS), University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
5
|
Salman G, Pehlivanoglu S, Aydin Acar C, Yesilot S. Anticancer Effects of Vitis vinifera L. Mediated Biosynthesized Silver Nanoparticles and Cotreatment with 5 Fluorouracil on HT-29 Cell Line. Biol Trace Elem Res 2022; 200:3159-3170. [PMID: 34546492 DOI: 10.1007/s12011-021-02923-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the anticancer effects of biosynthesized silver nanoparticles (Vv-AgNPs) from grape (Vitis vinifera L.) seed aqueous extract, alone or in combination with 5-Fluorouracil (5-FU) on HT-29 cell line. Vv-AgNPs were characterized by techniques such as UV-vis spectrophotometer (surface plasmon peak 454 nm), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). HT-29 cells were treated with different concentrations (0-80 μg/mL for MTT) and (0-20 μg/mL for BrdU) of Vv-AgNPs alone and combined with (200 μg/mL) 5-FU for 72 h. The cytotoxic effects were analyzed by [3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay (IC50 values 13.74 and 5.35 μg/mL, respectively). Antiproliferative effects were examined 5-bromo-2'-deoxyuridine (BrdU) assay (IC50 values 9.65 and 5.00 μg/mL, respectively). Activation of caspase-3 and protein expression levels of p53 were determined by Western blotting analysis. It was observed that Vv-AgNPs significantly increased the cleavage of the proapoptotic proteins caspase 3 and obviously enhanced the expression of p53 in a dose-dependent manner. The increased amount of total oxidant status (TOS) in the 10 μg/mL Vv-AgNPs + 5-FU treatment group, despite the increasing amount of total antioxidant status (TAS), caused an increase in Oxidative Stress Index (OSI) compared to the control. In this study, it has been shown in vitro that the use of successfully biosynthesized Vv-AgNPs in combination with 5-FU exhibits synergistic cytotoxic, antiproliferative, apoptotic, and oxidative effects against HT-29 cell line.
Collapse
Affiliation(s)
- Giray Salman
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Turkey
| | - Cigdem Aydin Acar
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sukriye Yesilot
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
6
|
Sohail, Sawati L, Ferrari E, Stierhof YD, Kemmerling B, Mashwani ZUR. Molecular Effects of Biogenic Zinc Nanoparticles on the Growth and Development of Brassica napus L. Revealed by Proteomics and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2022; 13:798751. [PMID: 35548317 PMCID: PMC9082993 DOI: 10.3389/fpls.2022.798751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Plants are indispensable on earth and their improvement in terms of food security is a need of time. The current study has been designed to investigate how biogenic zinc nanoparticles (Zn NPs) can improve the growth and development of Brassica napus L. In this study, Zn NPs were synthesized utilizing Mentha arvensis aqueous extracts, and their morphological and optical properties were assessed using UV-Visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized Zn NPs were irregular in shape, indicating aggregation in pattern, with an average particle size of 30 nm, while XRD analysis revealed the crystalline structure of nanoparticles. The growth and development of B. napus varieties (Faisal canola and Shiralee) were assessed after foliar treatments with different concentrations of biogenic Zn NPs. In B. napus varieties, exposure to 15 mg/L Zn NPs dramatically increased chlorophyll, carotenoid content, and biomass accumulation. Similarly, proteomic analyses, on the other hand, revealed that proteins associated with photosynthesis, transport, glycolysis, and stress response in both Brassica varieties were substantially altered. Such exposure to Zn NPs, differential expression of genes associated with photosynthesis, ribosome structural constituents, and oxidative stress response were considerably upregulated in B. napus var. (Faisal and Shiralee canola). The results of this study revealed that foliar applications of biogenic Zn NPs influence the transcriptome and protein profiling positively, therefore stimulating plant growth and development.
Collapse
Affiliation(s)
- Sohail
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, Berlin, Germany
| | - Laraib Sawati
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Elenora Ferrari
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Birgit Kemmerling
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
7
|
Batool SU, Javed B, Sohail, Zehra SS, Mashwani ZUR, Raja NI, Khan T, ALHaithloul HAS, Alghanem SM, Al-Mushhin AAM, Hashem M, Alamri S. Exogenous Applications of Bio-fabricated Silver Nanoparticles to Improve Biochemical, Antioxidant, Fatty Acid and Secondary Metabolite Contents of Sunflower. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1750. [PMID: 34361136 PMCID: PMC8308146 DOI: 10.3390/nano11071750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
The present study involved the bio-fabrication of silver nanoparticles (AgNPs) by using the Euphorbia helioscopia L. leaves aqueous extract to improve the production of secondary metabolites in industrially important sunflower (Helianthus annuus L.) plants. Phyto-fabrication of AgNPs was confirmed by using spectrophotometry, SEM imaging and X-ray diffraction analysis. The morphological and optical characterization manifested that the AgNPs are crystalline and exist in the size range of 30-100 nm. Various concentrations (10, 20, 40, 60, 80 and 100 mg/L) of AgNPs were applied in combinations on sunflower seeds and crop plants. The effects of biosynthesized AgNPs were evaluated for agro-morphological parameters (plant height, flowering initiation and seed weight), biochemical metabolites (chlorophyll, proline, soluble sugar, amino acid and protein contents) and enzymatic activities (superoxide dismutase and ascorbate peroxidase) in sunflower and 60 mg/L concentration of AgNPs on sunflower seeds and foliar sprays on plants in combination were found to be effective to elicit biochemical modifications to improve secondary metabolites. It was also observed experimentally that 60 mg/L concentration of AgNPs improved the biochemical, fatty acid and enzymatic attributes of sunflower plants, which in turn improved the plant agro-morphological parameters. Near-infrared spectroscopic analysis results confirmed the improvement in the seed quality, oil contents and fatty acid composition (palmitic acid, oleic acid and linoleic acid) after the applications of AgNPs. The findings of the present investigation confirm the exogenous applications of bio-fabricated AgNPs in combinations on seeds and plants to improve the plant yield, seed quality and secondary metabolite contents of the sunflower plants.
Collapse
Affiliation(s)
- Syeda Umber Batool
- Department of Chemical and Life Sciences, Qurtuba University of Science & Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Sohail
- Institute of Biology/Plant Physiology, Humboldt-University Zü Berlin, 10115 Berlin, Germany;
| | - Syeda Sadaf Zehra
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Punjab, Pakistan;
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan;
| | | | | | - Amina A. M. Al-Mushhin
- Department of Biology, College of Sciences and Humanities in AlKharj, Prince Sattam Bin Abdulaziz University, AlKharj 16278, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.H.); (S.A.)
| |
Collapse
|
8
|
Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, Mashwani ZUR. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine (Lond) 2021; 16:1429-1446. [PMID: 34085534 DOI: 10.2217/nnm-2021-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biogenic titanium dioxide nanoparticles have unique size, shape and biochemical functional corona that embellish them with the potential to perform therapeutic actions such as anticancer, antimicrobial, antioxidant, larvicidal and photocatalysis by adopting various mechanistic or physiological approaches at the molecular level. We have provided a detailed overview of some of these physiological mechanisms, including disruption of the electron transport chain, DNA fragmentation, mitochondrial damage, induction of apoptosis, disorganization of the plasma membrane, inhibition of ATP synthase activity, suspension of cellular signaling pathways and inhibition of enzymatic activity. The biogenic synthesis of customized titanium dioxide nanoparticles has future application potentials to do breakthroughs in the pharmaceutical sectors to advance precision medicine and to better explain the disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Syed Wajeeh Ul Hassan
- Department of General Medicine, Faisalabad Medical University, Faisalabad, Punjab 38000, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Abdullah Sarwer
- Department of Internal Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
9
|
Optical and Structural Properties of Biosynthesized Silver Nanoparticle Encapsulated PVA (Ag–PVA) Films. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01909-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol 2021; 105:2261-2275. [PMID: 33591386 DOI: 10.1007/s00253-021-11171-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Green synthesis of silver nanoparticles (SNPs) by harnessing the natural abilities of plant secondary metabolites has advantages over routine physical and chemical synthetic approaches due to their one-step experimental setup to reduce and stabilize the bulk silver into SNPs, biocompatible nature, and therapeutic significance. The unique size, shape, and biochemical functional corona of SNPs embellish them with the potential to perform therapeutic actions by adopting various mechanistic approaches including but not limited to the disruption of the electron transport chain, mitochondrial damage, DNA fragmentation, inhibition of ATP synthase activity, disorganization of the cell membrane, suspension of cellular signaling pathways, induction of apoptosis, and inhibition of enzymes activity. This review elaborates the biogenic synthesis of SNPs in redox chemical reactions by using plant secondary metabolites found in plant extracts. In addition, it explains the synergistic influence of physicochemical reaction parameters such as the temperature, pH, the concentration of the AgNO3, and the ratio of reactants to affect the reaction kinetics, molecular mechanics, enzymatic catalysis, and protein conformations that aid to affect the size, shape, and potential biochemical corona of nanoparticles. This review also provides up-to-date information on the mechanistic actions that embellish the plant-based SNPs, an anticancer, cytotoxic, antidiabetic, antimicrobial, and antioxidant potential. The mechanistic understanding of the therapeutic actions of SNPs will help in precision medicine to develop customized treatment and healthcare approaches for the welfare of the human population. KEY POINTS: • Significance of the biogenic nanoparticles • Biomedical application potential of the plant-based silver nanoparticles • Mechanism of the anticancer, antidiabetic, and antimicrobial actions of the plant-based silver nanoparticles.
Collapse
Affiliation(s)
- Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| | - Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Fatima Farooq
- Institute of Industrial Biotechnology, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Tahira Sultana
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| |
Collapse
|
11
|
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZUR, Ahmad MS, Ikram M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One 2021; 16:e0246880. [PMID: 33571310 PMCID: PMC7877615 DOI: 10.1371/journal.pone.0246880] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
The current study involves the biogenesis of titanium dioxide nanoparticles (TiO2 NPs) by using Moringa oleifera Lam. aqueous leaf extract for the reduction of titanium dioxide salt into TiO2 nanoparticles. The biosynthesized TiO2 nanoparticles were observed by using the UV-visible spectrophotometry, SEM, EDX and XRD analytical methods. It was confirmed that the nanoparticles are crystalline and exist in the size range of 10-100 nm. The FTIR analysis confirmed the presence of O-H (hydrogen bonding), N-H (amide), C-C (alkanes) and C-I (Iodo-stretch) functional groups responsible for the stabilization of nanoparticles. Various concentrations (20, 40, 60 and 80 mg/L) of TiO2 NPs were applied exogenously on wheat plants infected with a fungus Bipolaris sorokiniana responsible to cause spot blotch disease at different time intervals. The measurement of disease incidence and percent disease index showed the time-dependent response and 40 mg/L was reported a stable concentration of TiO2 NPs to reduce the disease severity. The effects of biosynthesized TiO2 NPs were also evaluated for agro-morphological (leaf and root surface area, plant fresh and dry weight and yield parameters), physiological (relative water content, membrane stability index and chlorophyll content) and non-enzymatic metabolites (soluble sugar, protein, soluble phenol and flavonoid content) in wheat plants under biotic stress and 40 mg/L concentration of TiO2 NPs was found to be effective to elicit modifications to reduce biotic stress. The current study highlights the significant role of biosynthesized TiO2 NPs in controlling fungal diseases of wheat plants and thus ultimately improving the quality and yield of wheat plants.
Collapse
Affiliation(s)
- Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Abida Akram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | - Muhammad Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| |
Collapse
|
12
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|