1
|
Singh K, Yadav S. Biosynthesis of a range of ZnO nanoparticles utilising Salvia hispanica L. seed extract and evaluation of their bioactivity. Sci Rep 2025; 15:4043. [PMID: 39900616 PMCID: PMC11790945 DOI: 10.1038/s41598-025-87355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Zinc deficiency precipitates considerable health problems in developing countries, affecting development, growth, and immunological function. The main issue is that zinc exhibits limited bioavailability in diets, sometimes compounded by the high concentration of phytate molecules in staple foods, which impedes zinc absorption. Nanoparticles offer a promising approach to improve zinc bioavailability and address deficiency through the application of advanced agricultural techniques. The study introduces a novel method for synthesizing Zinc oxide (ZnO) biometallic nanoparticles by employing aqueous extracts of Salvia hispanica L. (Chia seed) as a reducing and capping agent in an environmentally sustainable way. Their active phytoconstituents acted as a stabilising agent and facilitated the conversion of ionic zinc (Zn2+) into elemental zinc. The study synthesized the diverse forms of zinc oxide nanoparticles (NP-α, NP-β, NP-γ, NP-δ, NP-ε, and NP-η) utilising various molar concentrations (0.5mM, 1.0mM, 3.0mM, 5.0mM, 7.0mM, and 9.0mM) of a precursor solution, zinc nitrate [(ZnNO3)2]. The synthesized NPs were evaluated using UV-Vis spectroscopy, FTIR spectroscopy, XRD, SEM, EDX, TEM, SAED, and HR-TEM methods to determine their characteristics. The standard particle size varies from 40 to 80 nm, exhibiting a consistent hexagonal morphology and a polydispersed characteristic with minimal size fluctuation. The molarity substantially influenced the shape of NPs, particularly concerning their size and surface area. An in vitro evaluation was performed to investigate the antibacterial activity against Staphylococcus aureus and the possible degradation of the hazardous dye Congo red. The particles exhibited antibacterial efficacy at a concentration of 40 ppm ZnO, antidiabetic qualities at 10 µl/ml ZnONPs, antioxidant activity at concentrations ranging from 100 to 900 µl/ml showing 89.47 ± 0.022 µg AAE/mg, maximum activity with total antioxidant capacity (TAC), and dye degradation potential at a concentration of 50 mg ZnONPs, revealed 50.78% CR degradation after 90 min of irradiation. Additionally, it had significant inhibitory effects on the enzymes α-amylase (72.93%) and α-glucosidase (60.48%) by ZnONP-η. The efficacy of dye degradation with synthesized nanoparticles seems to enhance with increased particle sizes and reduced specific surface areas. The antioxidant, antidiabetic, and catalytic capabilities improved with an increase in particle size. Nevertheless, it was found that an increase in particle size corresponded with a substantial reduction in antibacterial activity. The study presents an efficient approach for the eco-friendly synthesis of ZnONPs, highlighting their significant potential for many biological applications.
Collapse
Affiliation(s)
- Kiran Singh
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
2
|
Haseeb HA, Khan MA, Rasheed H, Zahid MU, Doan TD, Siddique MAR, Ahmad U, Bokhari SAI. Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties. Biometals 2024:10.1007/s10534-024-00622-0. [PMID: 39127845 DOI: 10.1007/s10534-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.
Collapse
Affiliation(s)
- Hafiz Abdul Haseeb
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aslam Khan
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| | - Hassam Rasheed
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Muhammad Usman Zahid
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Thu Dung Doan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aamir Ramzan Siddique
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Uzair Ahmad
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| |
Collapse
|
3
|
Kamal A, Saba M, Farooq M. Biocompatible formulations based on mycosynthesized iron oxide nanoparticles: Fabrication, characterization, and biological investigation. J Basic Microbiol 2023; 63:156-167. [PMID: 36529705 DOI: 10.1002/jobm.202200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
The current study was carried out to synthesize iron oxide nanoparticles (IONPs) via green reduction method from a wild mushroom collected from Quaid-i-Azam University, Islamabad, Pakistan. The collected fungus was identified as Daedalea sp. based on morphological characteristics. Prepared NPs were produced from iron chloride hexahydrate with fungal filtrate via combustion method. The as prepared NPs were characterized by using different techniques for example, scanning electron microscopy (SEM), X-ray diffractions (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet visible (UV-Vis) spectroscopy. Morphology and size of the NPs were determined by SEM analysis. XRD study revealed crystalline nature of IONPs. The FT-IR spectrum exhibited peak at 3390.26 cm- 1 stretching that described the strong O-H band of the alcohol associated with mushroom texture. The major IONPs dose (0.75 mg/ml) demonstrated 71% growth inhibition against Aspergillus. Excellent antibacterial activities against Pseudomonas aeruginosa (28 mm), and Klesbsilla pneumonia (28 mm) were represented by the fabricated NPs. Further, highest reducing power (53.22 ± 0.72 µg AAE/mg) was shown by the highest administrated dose (400 µg/ml). Maximum 2,2-diphenyl-1-picrylhydrazyl and trolox antioxidant activity free radical scavenging activities at 400 µg/ml IONPs concentration were noted as 51.29 ± 0.48, and 83.12 ± 0.28 trolox equivalent antioxidant capacity, respectively. In brief, the negligible hemolytic activity against human red blood cells at the highest concentration (400 µg/ml), as well as, moderate antioxidant activities at low concentration suggest the application of the fabricated NPs in environmentally sound viable hygiene production.
Collapse
Affiliation(s)
- Asif Kamal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), PCSIR Head Office, Islamabad, Pakistan
| |
Collapse
|
4
|
Olojede SO, Lawal SK, Dare A, Naidu ECS, Rennie CO, Azu OO. Evaluation of tenofovir disoproxil fumarate loaded silver nanoparticle on testicular morphology in experimental type-2 diabetic rats. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:71-80. [PMID: 35343349 DOI: 10.1080/21691401.2022.2042009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Reproductive derangement and metabolic disorders in human immunodeficiency virus (HIV) infected persons require a nanoparticle delivery system to convey antiretroviral drugs to the anatomical sanctuary such as testis. This study investigated the effects of tenofovir disoproxil fumarate (TDF) loaded silver nanoparticles (AgNPs) on the testicular oxidative stress, inflammatory cytokines and histology in male diabetic rats. Thirty-six Sprague-Dawley rats weighing 230 ± 20 g were randomly divided into diabetic and non-diabetic groups (n = 18). Diabetes was induced using the fructose-streptozotocin (Frt-STZ) rat model. Both groups were further divided into three (n = 6) and administered distilled water, TDF, or TDF-AgNP. Results obtained with the TDF-AgNP administration showed a significant increase (p < .05) in the reduced glutathione and catalase levels. Tumour necrosis factor-alpha and interleukin 6 were reduced in diabetic rats administered TDF-AgNP. More so, administration of TDF-AgNP to diabetic rats improved testicular histoarchitecture in diabetic rats. In addition, diabetic rats administered TDF-AgNP showed a significant reduction (p < .05) in blood glucose levels. TDF-AgNP to diabetic rats enhanced testicular antioxidant enzyme, reduced testicular inflammation, and alleviated structural derangements in the testis. Thus, the application of AgNP to deliver TDF may alleviate testicular toxicity and subsequently cater for neglected reproductive dysfunction during the management of HIV infection.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Edwin C Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Windhoek, Namibia
| |
Collapse
|
5
|
Farooq M, Ihsan J, M K Mohamed R, Khan MA, Rehman TU, Ullah H, Ghani M, Saeed S, Siddiq M. Highly biocompatible formulations based on Arabic gum Nano composite hydrogels: Fabrication, characterization, and biological investigation. Int J Biol Macromol 2022; 209:59-69. [PMID: 35364204 DOI: 10.1016/j.ijbiomac.2022.03.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022]
Abstract
In the study, fabrication of Arabic gum (AG) hydrogels via reverse micellization method is reported. AG hydrogels were utilized as capping agents to encapsulate zinc sulphide (ZnS), and cadmium sulphide (CdS) nanoparticles via in-situ reduction. Pristine and nanocomposite hydrogels (AG-ZnS and AG-CdS) were characterized through SEM, EDX, TEM, XRD, FTIR, TGA, UV/Visible, and photoluminescence spectroscopy. The hydrogels were subjected to multiple biological assays including antimicrobial, antioxidant, and anti-diabetic formulation, in addition to biocompatibility test. The hydrogels were found to be more effective against bacterial and fungal strains. For instance, AG-ZnS exhibited excellent growth inhibition activity against Escherichia coli (ZoI: 12 ± 1.04 mm) and Candida albicans (35 ± 0.94 mm). Likewise, the nanocomposites hydrogel also displayed excellent DPPH and ABTS free radical scavenging capacity, total antioxidant capacity (TAC), and total reducing power (TRP) ability. Among the hydrogels, AG-ZnS demonstrated considerable α-amylase, and α-glucosidase inhibition potential. Above all, the hydrogels were found highly compatible with human red blood cells (hRBCs). Owing to remarkable antioxidant, antibacterial, antifungal, and bio-compatible nature, the fabricated nanocomposites hydrogels have the potential to be explored in tissue engineering, wound healing, drug delivery, and in environmentally friendly hygiene products.
Collapse
Affiliation(s)
- Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), 1-Constitution Avenue, G-5/2, Islamabad, Pakistan.
| | - Junaid Ihsan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia; Department of Chemistry, Faculty of Science, Assiut University, P.O. Box: 71515, Assiut, Egypt.
| | - Muhammad Aslam Khan
- Department of Biological Sciences, International Islamic University, Islamabad (IIUI), Pakistan
| | - Talmeez Ur Rehman
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hidayat Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Marvi Ghani
- Department of Medical Chemistry, Doctoral School of Molecular Medicine, University of Debrecen, 4032, Hungary
| | - Shaukat Saeed
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Mohammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
6
|
Synthesis and Optimization of Deesterified Acacia-Alginate Nanohydrogel for Amethopterin Delivery. Bioinorg Chem Appl 2022; 2022:7192919. [PMID: 35186053 PMCID: PMC8856825 DOI: 10.1155/2022/7192919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Naturally obtained materials are preferable for the production of biomedicine in biomedical applications. Acacia gum is has recently become a hopeful one in the biomedicine production due to its excellent properties, namely, emulsifier, stabilizing mediator, suspending agent, etc. In this novel work, we synthesised and characterized the deesterified Acacia gum-alginate nanohydrogel (DEA-AG NPs) as a carrier for amethopterin (ATN) delivery. This combination is used in the drug effectiveness and tissue engineering. In this work, the Taguchi route is implemented for estimating of particle size and zeta potential (mV) through optimization. Following three parameters are considered for this work: DEA solution concentration (0.008, 0.016, 0.024, and 0.032 w/v %), alginate molecular weight (3, 6, 9, and 12 MW), and ATN/DEA ratio (1 : 4, 1 : 8, 1 : 12, and 1 : 16 w/w %). In particle size analysis and zeta potential analysis, the DEA solution concentration is highly influenced. Minimum particle size is found as 148.50 nm. Similarly, maximum zeta potential is identified as 29.5 mV.
Collapse
|
7
|
Arif M. Complete life of cobalt nanoparticles loaded into cross-linked organic polymers: a review. RSC Adv 2022; 12:15447-15460. [PMID: 35693224 PMCID: PMC9121440 DOI: 10.1039/d2ra01058e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
The synthesis and use of Co nanoparticles loaded into cross-linked polymers for generation of hydrogen is discussed in detail. The factors affecting hydrogen production have been discussed briefly. The catalytic reduction of dyes and nitroarenes is also discussed in detail.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
8
|
Kainat, Khan MA, Ali F, Faisal S, Rizwan M, Hussain Z, Zaman N, Afsheen Z, Uddin MN, Bibi N. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co 3O 4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci 2021; 28:5157-5167. [PMID: 34466093 PMCID: PMC8381038 DOI: 10.1016/j.sjbs.2021.05.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Herein, we present a green, economic and ecofriendly protocol for synthesis of cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs) for multifaceted biomedical applications. In the study, a simple aqueous leaf extract of Hibiscus rosa sinensis, was employed for the facile one pot synthesis of Co3O4-NPs and MgO-NPs. The well characterized NPs were explored for multiple biomedical applications including bactericidal activity against urinary tract infection (UTI) isolates, leishmaniasis, larvicidal, antidiabetic antioxidant and biocompatibility studies. Our results showed that both the NPs were highly active against multidrug resistant UTI isolates as compared to traditional antibiotics and induced significant zone of inhibition against Proteus Vulgaris, Pseudomonas Aurigenosa and E.coli. The NPs, in particular Co3O4-NPs also showed significant larvicidal activity against the Aedes Aegypti, the mosquitoes involve in the transmission of Dengue fever. Similarly, excellent leishmanicidal activity was also observed against both the promastigote and amastigote forms of the parasite. Furthermore, the particles also exhibited considerable antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Owing to ecofriendly synthesis, non-toxic and biocompatible nature, the Hibiscus rosa sinensis synthesized Co3O4-NPs and MgO-NPs can be exploited as potential candidates for multiple biomedical applications.
Collapse
Affiliation(s)
- Kainat
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Aslam Khan
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhad Ali
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Shah Faisal
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Rizwan
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Zahid Hussain
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Nasib Zaman
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Zobia Afsheen
- Department of Microbiology and Biotechnology, Abasyn University, Peshawar, KPK, Pakistan
| | | | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, KPK, Pakistan
| |
Collapse
|