1
|
Lalli G, Sabatucci I, Paderno M, Martinelli F, Signorelli M, Maruccio M, Di Martino G, Fucà G, Lorusso D. Navigating the Landscape of Resistance Mechanisms in Antibody-Drug Conjugates for Cancer Treatment. Target Oncol 2025:10.1007/s11523-025-01140-w. [PMID: 40234302 DOI: 10.1007/s11523-025-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Antibody-drug conjugates (ADCs) are an innovative approach in cancer therapy, combining the specificity of monoclonal antibodies (mAb) with the cytotoxic effect of chemotherapy agents. Despite the remarkable efficacy demonstrated in clinical studies, primary and secondary resistance to ADCs represent a concern and a significant challenge. Known resistance mechanisms mainly involve the targeted tumor antigen; the internalization, trafficking, and cleavage processes; the cytotoxic payload; and the intrinsic tumor cell dynamics of cell death and cell signaling. Key strategies to overcome these resistance mechanisms include the use of antibodies targeting the same antigen but with different payloads, developing dual-payload ADCs that target multiple cellular pathways, switching from non-cleavable to cleavable linkers, and combining ADCs with other therapies such as immune checkpoint inhibitors and antiangiogenic agents. By improving our understanding of what underlies the mechanisms of resistance to ADCs and implementing and studying systems to overcome these mechanisms, as well as using innovative therapeutic combinations, ADCs have the potential to continue to play a fundamental role in the treatment of tumors, especially refractory ones, providing patients with more effective and long-lasting therapeutic options, as well as better outcomes.
Collapse
Affiliation(s)
- Gloria Lalli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Ilaria Sabatucci
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Mariachiara Paderno
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Fabio Martinelli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Mauro Signorelli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Matteo Maruccio
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Giampaolo Di Martino
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Giovanni Fucà
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy.
| | - Domenica Lorusso
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
| |
Collapse
|
2
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Yunusova N, Tulendinov E, Svarovsky D, Ryabova A, Kondakova I, Ponomaryova A, Vtorushin S, Tabakaev S, Korshunov D, Shtam T, Tamkovich S, Choynzonov E. Levels of Proangiogenic Molecules and Terminal Complement Complex C5b-9 in the Crown of Circulating sEVs in Patients with Recurrent Glioblastomas: Relationship with Tumor Molecular Characteristics. Curr Issues Mol Biol 2025; 47:132. [PMID: 39996852 PMCID: PMC11854864 DOI: 10.3390/cimb47020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Circulating small extracellular vesicles (sEVs) are emerging as potential biomarkers for glioblastoma progression. This study aimed to compare the levels of matrix metalloproteinases (MMP2 and MMP9), terminal complement complex (C5b-9), and VEGF-A in circulating sEVs in glioblastoma patients (GBMPs) with and without tumor recurrence. Using differential ultracentrifugation, sEVs were isolated from blood samples of GBMPs with no tumor recurrence for over one year (n = 6) and after first relapse (n = 14). The vesicles were characterized and quantified using flow cytometry. In both groups, C5b-9 was predominantly detected on tumor-specific circulating sEVs (glial fibrillary acidic protein (GFAP)-positive sEVs) with high VEGF-A expression, while C5b-9 was significantly less frequent on sEVs with low VEGF-A expression (p < 0.05). GFAP+VEGF+dimMMP2-C5b-9+ vesicles were rarely detected in GBMPs without relapse, suggesting their potential utility as biomarkers for a favorable relapse-free prognosis. In recurrent GBMPs, a positive correlation was observed between GFAP+VEGF+bright MMP2+C5b-9+ sEVs and MGMT gene promoter methylation levels (r = 0.543, p < 0.05). Additionally, a trend toward a negative correlation was found between GFAP+VEGF+bright MMP2+C5b-9- sEVs and mutant p53 expression in primary tumor tissue (r = -0.44, p = 0.114). These findings suggest that sEV profiles may serve as valuable prognostic markers for glioblastoma recurrence and treatment responses.
Collapse
Affiliation(s)
- Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
- Department of Biochemistry and Molecular Biology with the Course of Clinical Laboratory Diagnostics, Siberian State Medical University (Siberian State Medical University of the Ministry of Health of the Russian Federation), Moskovsky Tract, 2, 634050 Tomsk, Russia;
| | - Eldar Tulendinov
- Department of Biochemistry and Molecular Biology with the Course of Clinical Laboratory Diagnostics, Siberian State Medical University (Siberian State Medical University of the Ministry of Health of the Russian Federation), Moskovsky Tract, 2, 634050 Tomsk, Russia;
| | - Dmitry Svarovsky
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
- Department of Biochemistry and Molecular Biology with the Course of Clinical Laboratory Diagnostics, Siberian State Medical University (Siberian State Medical University of the Ministry of Health of the Russian Federation), Moskovsky Tract, 2, 634050 Tomsk, Russia;
| | - Anastasia Ryabova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| | - Irina Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| | - Sergey Vtorushin
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
- Department of Biochemistry and Molecular Biology with the Course of Clinical Laboratory Diagnostics, Siberian State Medical University (Siberian State Medical University of the Ministry of Health of the Russian Federation), Moskovsky Tract, 2, 634050 Tomsk, Russia;
| | - Stanislav Tabakaev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| | - Dmitry Korshunov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| | - Tatiana Shtam
- St. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roshcha 1, 188300 Gatchina, Russia;
| | - Svetlana Tamkovich
- Department of Clinical Biochemistry, Novosibirsk State University, 2, Pirogov St., 630090 Novosibirsk, Russia;
| | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str., 5, 634009 Tomsk, Russia; (D.S.); (A.R.); (A.P.); (S.V.); (S.T.)
| |
Collapse
|
4
|
Khan Y, Hussain MS, Ramalingam PS, Fatima R, Maqbool M, Ashique S, Khan NU, Bisht AS, Gupta G. Exploring extracellular RNA as drivers of chemotherapy resistance in cancer. Mol Biol Rep 2025; 52:142. [PMID: 39836259 DOI: 10.1007/s11033-025-10263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer. We discuss the mechanisms by which exRNA facilitates drug resistance, such as modulating gene expression, influencing the tumor microenvironment, and facilitating intercellular communication. Furthermore, we examine the potential of exRNA as prognostic factor for determining oncology treatment efficacy and their emerging role as therapeutic targets. Diagnostic and prognostic applications of exRNA biomarkers are considered, alongside current methodologies for their detection and quantification. Additionally, we review recent advances in exRNA-targeted therapies, highlighting ongoing clinical trials and therapeutic strategies aimed at overcoming chemoresistance. Despite the promise of exRNA research, several challenges remain, including technical limitations and the biological complexity of exRNA networks. This review underscores the importance of continued investigation into exRNA biology and its therapeutic potential, which in the future may provide new avenues for cancer treatment and tailored medical strategies. By elucidating the role of exRNA in CR, this article aims to provide a comprehensive resource for researchers and clinicians seeking to improve the effectiveness of carcinoma management approaches.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Rabab Fatima
- Department of Chemistry, Energy Acres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Jammu, Srinagar, Kashmir, 190006, India
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
5
|
Jiang Y, Zhou H, Liu J, Ha W, Xia X, Li J, Chao T, Xiong H. Progress and Innovative Combination Therapies in Trop-2-Targeted ADCs. Pharmaceuticals (Basel) 2024; 17:652. [PMID: 38794221 PMCID: PMC11125602 DOI: 10.3390/ph17050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Precise targeting has become the main direction of anti-cancer drug development. Trophoblast cell surface antigen 2 (Trop-2) is highly expressed in different solid tumors but rarely in normal tissues, rendering it an attractive target. Trop-2-targeted antibody-drug conjugates (ADCs) have displayed promising efficacy in treating diverse solid tumors, especially breast cancer and urothelial carcinoma. However, their clinical application is still limited by insufficient efficacy, excessive toxicity, and the lack of biological markers related to effectiveness. This review summarizes the clinical trials and combination therapy strategies for Trop-2-targeted ADCs, discusses the current challenges, and provides new insights for future advancements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.J.); (H.Z.); (J.L.); (W.H.); (X.X.); (J.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.J.); (H.Z.); (J.L.); (W.H.); (X.X.); (J.L.)
| |
Collapse
|
6
|
Pourjamal N, Yazdi N, Halme A, Joncour VL, Laakkonen P, Saharinen P, Joensuu H, Barok M. Comparison of trastuzumab emtansine, trastuzumab deruxtecan, and disitamab vedotin in a multiresistant HER2-positive breast cancer lung metastasis model. Clin Exp Metastasis 2024; 41:91-102. [PMID: 38367127 PMCID: PMC10973002 DOI: 10.1007/s10585-024-10278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Human epidermal growth factor 2 (HER2)-positive breast cancer with lung metastases resistant to targeted agents is a common therapeutic challenge. Absence of preclinical lung metastasis models that are resistant to multiple anti-HER2 targeted drugs hampers the development of novel therapies. We established a novel HER2-positive breast cancer cell line (L-JIMT-1) with a high propensity to form lung metastases from the parenteral JIMT-1 cell line by injecting JIMT-1 cells into immunodeficient SCID mice. Lung metastases developed in all mice injected with L-JIMT-1 cells, and more rapidly and in greater numbers compared with the parental JIMT-1 cells. L-JIMT-1 cells expressed more epidermal growth factor receptor and HER2 than JIMT-1 cells. L-JIMT-1 cells were resistant to all five tyrosine kinase inhibitors tested in vitro (afatinib, erlotinib, lapatinib, sapitinib, and tucatinib). When we compared JIMT-1 and L-JIMT-1 sensitivity to three HER2-targeting antibody-drug conjugates (ADCs) trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and disitamab vedotin (DV) in vitro, JIMT-1 cells were resistant T-DXd, partially sensitive to T-DM1, and sensitive to DV, while L-JIMT-1 cells were resistant to both T-DM1 and T-DXd, but moderately sensitive to DV. In a mouse model, all three ADCs inhibited the growth of L-JIMT-1 lung metastases compared to a vehicle, but DV and T-DXd more strongly than T-DM1, and DV treatment led to the smallest tumor burden. The L-JIMT breast cancer lung metastasis model developed may be useful in the evaluation of anti-cancer agents for multiresistant HER2-positive advanced breast cancer.
Collapse
Affiliation(s)
- Negar Pourjamal
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, Finland
| | - Narjes Yazdi
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, Finland
| | - Aleksi Halme
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, Finland
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mark Barok
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, Finland.
- Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
7
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
8
|
Wilczak M, Surman M, Przybyło M. The Role of Intracellular and Extracellular Vesicles in the Development of Therapy Resistance in Cancer. Curr Pharm Des 2024; 30:2765-2784. [PMID: 39113303 DOI: 10.2174/0113816128326325240723051625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 10/22/2024]
Abstract
Cancer is the second leading cause of global mortality and claims approximately 10 million lives annually. Despite advances in treatments such as surgery, chemotherapy, and immunotherapy, resistance to these methods has emerged. Multidrug resistance (MDR), where cancer cells resist diverse treatments, undermines therapy effectiveness, escalating mortality rates. MDR mechanisms include, among others, drug inactivation, reduced drug uptake, enhanced DNA repair, and activation of survival pathways such as autophagy. Moreover, MDR mechanisms can confer resistance to other therapies like radiotherapy. Understanding these mechanisms is crucial for improving treatment efficacy and identifying new therapeutic targets. Extracellular vesicles (EVs) have gathered attention for their role in cancer progression, including MDR development through protein transfer and genetic reprogramming. Autophagy, a process balancing cellular resources, also influences MDR. The intersection of EVs and autophagy further complicates the understanding of MDR. Both extracellular (exosomes, microvesicles) and intracellular (autophagic) vesicles contribute to therapy resistance by regulating the tumor microenvironment, facilitating cell communication, and modulating drug processing. While much is known about these pathways, there is still a need to explore their potential for predicting treatment responses and understanding tumor heterogeneity.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Wei YN, Yan CY, Zhao ML, Zhao XH. The role and application of vesicles in triple-negative breast cancer: Opportunities and challenges. Mol Ther Oncolytics 2023; 31:100752. [PMID: 38130701 PMCID: PMC10733704 DOI: 10.1016/j.omto.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Extracellular vesicles (EVs) carry DNA, RNA, protein, and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. Triple-negative breast cancer (TNBC) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the tumor microenvironment via EVs. In this article, we describe the roles of EVs in the tumor immune microenvironment, metabolic microenvironment, and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens, and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
10
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Yunusova NV, Popova NO, Udintseva IN, Klyushina TS, Kazantseva DV, Smirnova LP. The Role of Intravesicular Proteins and the Protein Corona of Extracellular Vesicles in the Development of Drug-Induced Polyneuropathy. Curr Issues Mol Biol 2023; 45:3302-3314. [PMID: 37185740 PMCID: PMC10136474 DOI: 10.3390/cimb45040216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Extracellular vesicles (EVs) as membrane structures of cellular origin participating in intercellular communication are involved in the molecular mechanisms of the development of various variants of polyneuropathy. Taking into account the increasing role of the protein corona of EVs and protein-protein interactions on the surface of EVs in the pathogenesis of various diseases, we focused our attention in this review on the role of intravesicular proteins and the protein corona of EVs in the development of chemotherapy-induced polyneuropathy (CIPN). It has been shown that EVs are effectively internalized by the mechanisms of endocytosis and macropinocytosis by neurocytes and glial cells, carry markers of insulin resistance, functionally active proteins (receptors, cytokines, enzymes), and may be involved in the pathogenesis of CIPN. The mechanisms of CIPN associated with the EVs protein corona can be related with the accumulation of heavy chains of circulating IgG in it. G-class immunoglobulins in EVs are likely to have myelin hydrolyzing, superoxide dismutase, and oxidoreductase enzymatic activities. Moreover, circulating IgG-loaded EVs are a place for complement activation that can lead to membrane attack complex deposition in neuroglia and neurons. The mechanisms of CIPN development that are not associated with IgG in the EVs protein corona are somehow related to the fact that many anticancer drugs induce apoptosis of tumor cells, neurons, and neuroglial cells by various mechanisms. This process may be accompanied by the secretion of EVs with modified cargo (HSPs, 20S proteasomes, miRNAs).
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Natalia O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Irina N Udintseva
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Tatyana S Klyushina
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Daria V Kazantseva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Liudmila P Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| |
Collapse
|
12
|
Li T, Zhang L, Lu T, Zhu T, Feng C, Gao N, Liu F, Yu J, Chen K, Zhong J, Tang Q, Zhang Q, Deng X, Ren J, Zeng J, Zhou H, Zhu J. Engineered Extracellular Vesicle-Delivered CRISPR/CasRx as a Novel RNA Editing Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206517. [PMID: 36727818 PMCID: PMC10074121 DOI: 10.1002/advs.202206517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Indexed: 06/10/2023]
Abstract
Engineered extracellular vesicles (EVs) are considered excellent delivery vehicles for a variety of therapeutic agents, including nucleic acids, proteins, drugs, and nanomaterials. Recently, several studies have indicated that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) delivered by EVs enable efficient DNA editing. However, an RNA editing tool delivered by EVs is still unavailable. Here, a signal peptide-optimized and EVs-delivered guide RNA (gRNA) and CRISPR/CasRx (Cas13d) system capable of rapidly inhibiting the expression of targeted genes with quick catabolism after performing their functions is developed. EVs with CRISPR/CasRx and tandem gRNAs targeting pivotal cytokines are further packed whose levels increase substantially over the course of acute inflammatory diseases and find that these engineered EVs inhibit macrophage activation in vitro. More importantly, this system attenuates lipopolysaccharide (LPS)-triggered acute lung injury and sepsis in the acute phase, mitigating organ damage and improving the prognosis in vivo. In summary, a potent tool is provided for short-acting RNA editing, which could be a powerful therapeutic platform for the treatment of acute diseases.
Collapse
Affiliation(s)
- Tianwen Li
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Liansheng Zhang
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Lu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Tongming Zhu
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Canbin Feng
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Ni Gao
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Fei Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseMolecular Diagnosis CenterDepartment of Pulmonary and Critical Care MedicineFirst Affiliated HospitalBengbu Medical CollegeNo. 287 Changhuai RoadBengbuAnhui233004China
| | - Jingyu Yu
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Kezhu Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Junjie Zhong
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Qisheng Tang
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Quan Zhang
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Xiangyang Deng
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Junwei Ren
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Jun Zeng
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| | - Haibo Zhou
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Jianhong Zhu
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersNational Key Laboratory for Medical NeurobiologyInstitutes of Brain ScienceShanghai Key Laboratory of Brain Function and RegenerationInstitute of NeurosurgeryMOE Frontiers Center for Brain ScienceShanghai200040China
| |
Collapse
|
13
|
Sun W, Li Y, Sui D, Qi Z, Zhao X, Zhou W, Hu H, Liu X, Song Y, Deng Y. A potential platform of combining sialic acid derivative-modified paclitaxel cationic liposomes with antibody-drug conjugates inspires robust tumor-specific immunological memory in solid tumors. Biomater Sci 2023; 11:2787-2808. [PMID: 36825722 DOI: 10.1039/d2bm01769e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in the past few years have fueled the ongoing development of this class of drug. However, the limitation of ADCs is selectivity toward cancer cells especially overexpressing the antigen of interest. To broaden the anti-cancer spectrum of ADCs, combinatorial strategies of ADCs with chemotherapy have become a central focus of the current preclinical and clinical research. Here, we used the microtubule stabilizer paclitaxel and enfortumab vedotin-ejfv (EV), an ADC carrying the microtubule inhibitor payload monomethyl auristatin E (MMAE), for co-administration under the consideration of their mechanism of action associated with microtubules. We designed a sialic acid-cholesterol (SA-CH) conjugate-modified cationic liposome platform loaded with PTX (PTX-SAL) for efficiently targeting tumor-associated immune cells. Compared with monotherapy, PTX-SAL-mediated combination therapy with ADCs significantly inhibited S180 tumor growth in mice, with complete tumor regression occurring. The formation of a durable tumor-specific immunological memory response in mice that experienced complete tumor regression was assessed by secondary tumor cell rechallenge, and the production of memory T cells in the spleen was detected as related to the increased CD4+T memory cells and the enhanced serum IFN-γ. All our preliminary results throw light on the tremendous application potential for the application of this combination therapy regimen capable of mounting a durable immune response and stimulating a robust T cell-mediated tumor-specific immunological memory.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Xinran Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Huiguo Hu
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
14
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
15
|
Plasma Exchange May Enhance Antitumor Effects by Removal of Soluble Programmed Death-Ligand 1 and Extracellular Vesicles: Preliminary Study. Biomedicines 2022; 10:biomedicines10102483. [PMID: 36289745 PMCID: PMC9599354 DOI: 10.3390/biomedicines10102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The antitumor effect of antibody-drug conjugates (ADC) is the main factor in achieving cures. Although the mechanism of tumor resistance to treatment is multifaceted, tumor-derived extracellular vesicles (T-EVs) have been implicated as contributing to the attenuation of ADC therapeutic efficacy. Thus, strategies to eliminate T-EVs are highly promising for overcoming drug resistance. Here we demonstrate plasma exchange therapy to remove T-EVs, decreasing their amount in vitro by 75%. Although trastuzumab emtansine (T-DM1) treatment alone was effective in our rat tumor model, the combination therapy of T-DM1 and T-EV filtration achieved early tumor shrinkage. Our results indicate that T-EV filtration plus ADC is a promising strategy for overcoming drug resistance.
Collapse
|
16
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
17
|
Lee J, Lee JH, Chakraborty K, Hwang J, Lee YK. Exosome-based drug delivery systems and their therapeutic applications. RSC Adv 2022; 12:18475-18492. [PMID: 35799926 PMCID: PMC9218984 DOI: 10.1039/d2ra02351b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, scientists have actively worked on developing effective drug delivery systems (DDSs) as means to control life-threatening diseases and challenging illnesses.
Collapse
Affiliation(s)
- Jaewook Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, Chung-Buk, 27909, Republic of Korea
| | - Ji-Heon Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, Chung-Buk, 27909, Republic of Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, Chung-Buk 27469, Republic of Korea
| | - Joon Hwang
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, Chung-Buk, 27909, Republic of Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju, Chung-Buk 27469, Republic of Korea
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, Chung-Buk, 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chung-Buk 27469, Republic of Korea
| |
Collapse
|
18
|
Liu C, Zhang G, Xiang K, Kim Y, Lavoie RR, Lucien F, Wen T. Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunol Immunother 2021; 71:1549-1567. [PMID: 34739560 DOI: 10.1007/s00262-021-03097-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Guangwei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kanghui Xiang
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ti Wen
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Martín-Sabroso C, Lozza I, Torres-Suárez AI, Fraguas-Sánchez AI. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics 2021; 13:1705. [PMID: 34683998 PMCID: PMC8541375 DOI: 10.3390/pharmaceutics13101705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decade, antibody-drug conjugates (ADCs), normally formed by a humanized antibody and a small drug via a chemical cleavable or non-cleavable linker, have emerged as a potential treatment strategy in cancer disease. They allow to get a selective delivery of the chemotherapeutic agents at the tumor level, and, consequently, to improve the antitumor efficacy and, especially to decrease chemotherapy-related toxicity. Currently, nine antibody-drug conjugate-based formulations have been already approved and more than 80 are under clinical trials for the treatment of several tumors, especially breast cancer, lymphomas, and multiple myeloma. To date, no ADCs have been approved for the treatment of gynecological formulations, but many formulations have been developed and have reached the clinical stage, especially for the treatment of ovarian cancer, an aggressive disease with a low five-year survival rate. This manuscript analyzes the ADCs formulations that are under clinical research in the treatment of gynecological carcinomas, specifically ovarian, endometrial, and cervical tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irene Lozza
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
20
|
Bocharova EA, Kopytina NI, Slynko ЕЕ. Anti-tumour drugs of marine origin currently at various stages of clinical trials (review). REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncological diseases for a long time have remained one of the most significant health problems of modern society, which causes great losses in its labour and vital potential. Contemporary oncology still faces unsolved issues as insufficient efficacy of treatment of progressing and metastatic cancer, chemoresistance, and side-effects of the traditional therapy which lead to disabilities among or death of a high number of patients. Development of new anti-tumour preparations with a broad range of pharmaceutical properties and low toxicity is becoming increasingly relevant every year. The objective of the study was to provide a review of the recent data about anti-tumour preparations of marine origin currently being at various phases of clinical trials in order to present the biological value of marine organisms – producers of cytotoxic compounds, and the perspectives of their use in modern biomedical technologies. Unlike the synthetic oncological preparations, natural compounds are safer, have broader range of cytotoxic activity, can inhibit the processes of tumour development and metastasis, and at the same time have effects on several etiopathogenic links of carcinogenesis. Currently, practical oncology uses 12 anti-tumour preparations of marine origin (Fludarabine, Cytarabine, Midostaurin, Nelarabine, Eribulin mesylate, Brentuximab vedotin, Trabectedin, Plitidepsin, Enfortumab vedotin, Polatuzumab vedotin, Belantamab mafodotin, Lurbinectedin), 27 substances are at different stages of clinical trials. Contemporary approaches to the treatment of oncological diseases are based on targeted methods such as immune and genetic therapies, antibody-drug conjugates, nanoparticles of biopolymers, and metals. All those methods employ bioactive compounds of marine origin. Numerous literature data from recent years indicate heightened attention to the marine pharmacology and the high potential of marine organisms for the biomedicinal and pharmaceutic industries.
Collapse
|
21
|
Barok M, Puhka M, Yazdi N, Joensuu H. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. J Extracell Vesicles 2021; 10:e12070. [PMID: 33613875 PMCID: PMC7881363 DOI: 10.1002/jev2.12070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of anti-cancer drugs that consist of a monoclonal antibody, a highly potent small-molecule cytotoxic drug, and a chemical linker between the two. ADCs can selectively deliver cytotoxic drugs to cancer cells leading to a reduced systemic exposure and a wider therapeutic window. To date, nine ADCs have received marketing approval, and over 100 are being investigated in nearly 600 clinical trials. The target antigens of at least eight out of the nine approved anti-cancer ADCs and of 69 investigational ADCs are present on extracellular vesicles (EVs) (tiny particles produced by almost all types of cells) that may carry their contents into local and distant cells. Therefore, the EVs have a potential to mediate both the anti-cancer effects and the adverse effects of ADCs. In this overview, we discuss the mechanisms of action of ADCs and the resistance mechanisms to them, the EV-mediated resistance mechanisms to small molecule anti-cancer drugs and anti-cancer monoclonal antibodies, and the EVs as modifiers of ADC efficacy and safety.
Collapse
Affiliation(s)
- Mark Barok
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Maija Puhka
- Institute for Molecular Medicine FIMMEV and HiPrep CoreUniversity of HelsinkiHelsinkiFinland
| | - Narjes Yazdi
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Heikki Joensuu
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| |
Collapse
|