1
|
Kramer TS, Wan FK, Pugliese SM, Atanas AA, Hiser AW, Luo J, Bueno E, Flavell SW. Neural Sequences Underlying Directed Turning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607076. [PMID: 39149398 PMCID: PMC11326294 DOI: 10.1101/2024.08.11.607076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.
Collapse
Affiliation(s)
- Talya S. Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K. Wan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M. Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W. Hiser
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Matsumoto A, Toyoshima Y, Zhang C, Isozaki A, Goda K, Iino Y. Neuronal sensorimotor integration guiding salt concentration navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2310735121. [PMID: 38252838 PMCID: PMC10835141 DOI: 10.1073/pnas.2310735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Animals navigate their environment by manipulating their movements and adjusting their trajectory which requires a sophisticated integration of sensory data with their current motor status. Here, we utilize the nematode Caenorhabditis elegans to explore the neural mechanisms of processing the sensory and motor information for navigation. We developed a microfluidic device which allows animals to freely move their heads while receiving temporal NaCl stimuli. We found that C. elegans regulates neck bending direction in response to temporal NaCl concentration changes in a way which is consistent with a C. elegans' navigational strategy which regulates traveling direction toward preferred NaCl concentrations. Our analysis also revealed that the activity of a neck motor neuron is significantly correlated with neck bending and activated by the decrease in NaCl concentration in a phase-dependent manner. By combining the analysis of behavioral and neural response to NaCl stimuli and optogenetic perturbation experiments, we revealed that NaCl decrease during ventral bending activates the neck motor neuron which counteracts ipsilateral bending. Simulations further suggest that this phase-dependent response of neck motor neurons can facilitate curving toward preferred salt concentrations.
Collapse
Grants
- JP17H06113 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00416 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20K21805 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19H04980 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJCR22N4 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJPR1947 MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JP26830006 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP18K14848 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP22H04838 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP17H05970 MEXT | Japan Society for the Promotion of Science (JSPS)
- 19H04928 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMXP09F19UT0122 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP09F20UT0123 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Ayaka Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Chenqi Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga525-8577, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
3
|
Lindsay JH, Mathies LD, Davies AG, Bettinger JC. A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2210462119. [PMID: 36343256 PMCID: PMC9674237 DOI: 10.1073/pnas.2210462119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated. We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.
Collapse
Affiliation(s)
- Jonathan H. Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
4
|
Parida L. The locomotory characteristics of Caenorhabditis elegans in various external environments: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Suzuki M, Hattori Y, Saito T, Harada Y. Pond Assay for the Sensory Systems of Caenorhabditis elegans: A Novel Anesthesia-Free Method Enabling Detection of Responses to Extremely Low Chemical Concentrations. BIOLOGY 2022; 11:biology11020335. [PMID: 35205201 PMCID: PMC8868598 DOI: 10.3390/biology11020335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We propose a pond assay for the sensory systems (PASS) of Caenorhabditis elegans as a novel method of behavioral analysis. In PASS, the test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to the solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the response to specific substances. Furthermore, the test itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS through a series of chemotaxis assays. By using the PASS method, we found that the olfactory system of C. elegans accurately senses odors even at extremely low concentrations lower than the previously known detection threshold. This method can be applied to biosensor technology that uses C. elegans to detect chemical substances present at extremely low concentrations in environmental samples and biological samples with high sensitivity. Abstract Chemotaxis in the nematode Caenorhabditis elegans has basically been examined using conventional assay methods. Although these can be problematic, for example, in their use of anesthesia, the method has never been improved. We propose a pond assay for the sensory systems (PASS) of C. elegans as a novel population-based method of behavioral analysis. The test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to a solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the attractant or repellent response to specific substances. Furthermore, the assay itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS.
Collapse
Affiliation(s)
- Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
- Correspondence: ; Tel.: +81-(0)27-346-9542; Fax: +81-(0)27-346-9353
| | - Yuya Hattori
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
| | - Toshiyuki Saito
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| | - Yoshinobu Harada
- Human Resources Development Center, National Institutes for Quantum Science and Technology (QST-CHRD), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| |
Collapse
|
6
|
Sakelaris BG, Li Z, Sun J, Banerjee S, Booth V, Gourgou E. Modelling learning in C. elegans chemosensory and locomotive circuitry for T-maze navigation. Eur J Neurosci 2021; 55:354-376. [PMID: 34894022 PMCID: PMC9269982 DOI: 10.1111/ejn.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T‐maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T‐maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food‐released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food‐baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom‐made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.
Collapse
Affiliation(s)
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Jiawei Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Shurjo Banerjee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor.,Department of Anesthesiology, University of Michigan, Ann Arbor
| | - Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor.,Institute of Gerontology, Medical School, University of Michigan, Ann Arbor
| |
Collapse
|
7
|
Wakabayashi T, Nojiri Y, Takahashi-Watanabe M. Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biol Trace Elem Res 2021; 199:2764-2769. [PMID: 32914378 DOI: 10.1007/s12011-020-02375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
As rare earth (RE) metals are abundantly present in the soil, in spite of their name, it is conceivable that organisms may encounter and interact with RE ions. In the present study, we demonstrated that the soil nematode Caenorhabditis elegans avoids RE ions, such as yttrium and all examined lanthanide ions, which exhibit toxic effects on nematodes. We also demonstrated that the chemosensory system of this animal mediates avoidance behavior toward RE ions similar to heavy metal (HM) ion avoidance. The C. elegans dyf-11(pe554) mutant is unable to respond to chemosensory cues because it lacks all ciliated endings of the chemosensory neurons required for the detection of environmental chemicals. Cell-specific rescue of the dyf-11 mutant and cell-specific genetic ablation studies revealed that the avoidance behavior toward HM and RE ions was mediated by a partially overlapping but distinct subset of chemosensory neurons (ASH, ADL, ASE, ADF, and ASK). With the help of multiple chemosensory neurons, worms may improve the fidelity of avoidance behavior to evade RE ions. Among the chemosensory neurons in C. elegans, ADF and ASK neurons were involved in RE avoidance, but not in HM avoidance. These results suggested that ADF and ASK neurons in C. elegans have RE-selective mechanisms to mediate the avoidance response.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yui Nojiri
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Miwa Takahashi-Watanabe
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
8
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Bian J, Zhang H, Meng S, Liu Y. Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids. J Nematol 2018; 50:3-8. [PMID: 30335907 DOI: 10.21307/jofnem-2018-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 11/11/2022] Open
Abstract
A variety of natural substances including both volatile organic compounds and water-soluble compounds play a significant role in the chemotactic behaviors of the model nematode Caenorhabditis elegans. We observed chemotactic behaviors of C. elegans with respect to response to attractants produced by nematode parasitic fungus Stropharia rugosoannulata, which were partially induced by specific amino acids. The results of gas chromatography-mass spectrometer analysis suggested that 1-octen-3-ol was produced and benzaldehyde concentrations increased when L-phenylalanine was added to water agar plate. Similarly, the addition of L-tryptophan to the medium induced the production of benzaldehyde, 1-octen-3-ol and indole. The presence of L-phenylalanine and L-tryptophan increased the attraction of C. elegans to S. rugosoannulata. With attraction increased, nematode mortality increased more than 6 times higher.
Collapse
Affiliation(s)
- Jing Bian
- State Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University,Kunming 650091,P. R. China
| | - Haili Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University,Kunming 650091,P. R. China
| | - Shuai Meng
- State Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University,Kunming 650091,P. R. China
| | - Yajun Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University,Kunming 650091,P. R. China
| |
Collapse
|
10
|
Murayama T, Maruyama I. Plate Assay to Determine Caenorhabditis elegans Response to Water Soluble and Volatile Chemicals. Bio Protoc 2018; 8:e2740. [DOI: 10.21769/bioprotoc.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 11/02/2022] Open
|
11
|
Nishijima S, Maruyama IN. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Front Behav Neurosci 2017; 11:80. [PMID: 28507513 PMCID: PMC5410607 DOI: 10.3389/fnbeh.2017.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.
Collapse
Affiliation(s)
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| |
Collapse
|
12
|
Yu L, Yan X, Ye C, Zhao H, Chen X, Hu F, Li H. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans. PLoS One 2015. [PMID: 26222828 PMCID: PMC4519269 DOI: 10.1371/journal.pone.0134401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes.
Collapse
Affiliation(s)
- Li Yu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaomei Yan
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Chenglong Ye
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Haiyan Zhao
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
14
|
Wang W, Xu ZJ, Wu YQ, Qin LW, Li ZY, Wu ZX. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochem Biophys Res Commun 2015; 461:463-8. [PMID: 25871795 DOI: 10.1016/j.bbrc.2015.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zi-Jing Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ya-Qian Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Li-Wei Qin
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhao-Yu Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
15
|
Werner KM, Perez LJ, Ghosh R, Semmelhack MF, Bassler BL. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. J Biol Chem 2014; 289:26566-26573. [PMID: 25092291 PMCID: PMC4176233 DOI: 10.1074/jbc.m114.573832] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/11/2014] [Indexed: 11/06/2022] Open
Abstract
In a process known as quorum sensing, bacteria use chemicals called autoinducers for cell-cell communication. Population-wide detection of autoinducers enables bacteria to orchestrate collective behaviors. In the animal kingdom detection of chemicals is vital for success in locating food, finding hosts, and avoiding predators. This behavior, termed chemotaxis, is especially well studied in the nematode Caenorhabditis elegans. Here we demonstrate that the Vibrio cholerae autoinducer (S)-3-hydroxytridecan-4-one, termed CAI-1, influences chemotaxis in C. elegans. C. elegans prefers V. cholerae that produces CAI-1 over a V. cholerae mutant defective for CAI-1 production. The position of the CAI-1 ketone moiety is the key feature driving CAI-1-directed nematode behavior. CAI-1 is detected by the C. elegans amphid sensory neuron AWC(ON). Laser ablation of the AWC(ON) cell, but not other amphid sensory neurons, abolished chemoattraction to CAI-1. These analyses define the structural features of a bacterial-produced signal and the nematode chemosensory neuron that permit cross-kingdom interaction.
Collapse
Affiliation(s)
- Kristen M Werner
- Department of Molecular Biology and Princeton University, Princeton, New Jersey 08544
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028
| | - Rajarshi Ghosh
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, Texas 77030, and
| | | | - Bonnie L Bassler
- Department of Molecular Biology and Princeton University, Princeton, New Jersey 08544; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.
| |
Collapse
|
16
|
Abstract
Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival.
Collapse
|
17
|
The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol Adv 2014; 32:290-5. [DOI: 10.1016/j.biotechadv.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
|
18
|
Dunsenbery DB. Video camera-computer tracking of nematodeCaenorhabditis elegans to record behavioral responses. J Chem Ecol 2013; 11:1239-47. [PMID: 24310386 DOI: 10.1007/bf01024112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1984] [Revised: 01/14/1985] [Indexed: 11/28/2022]
Abstract
A new method is used to analyze responses to changes in the concentration of two chemical stimuli. Nematodes are allowed to move around on the surface of a thin layer of agar across which a stream of air blows to carry volatile stimuli. Darkfield illumination provides high-contrast images of the worms which are acquired by a video camera and fed to a microcomputer which is programed to simultaneously track and record the movements and changes in direction of as many as 25 animals. The results are reported in real time. The worms respond to an increase in CO2 concentration by decreasing the number moving and increasing the number of changes of direction. Both responses adapt to steady-state levels in about half a minute. This suggests that they respond by changing the probability of initiating a reversal bout. This observation adds a repellent to the class of stimuli thatC. elegans reponds to by klinokinesis. The resonses to changes in oxygen concentration are somewhat different. Movements and changes in direction both decrease when the oxygen concentration falls and increase when the concentration rises. No adaptation is seen within the one-minute time span observed. This observation provides further evidence that the response to oxygen differs from the response to other chemicals and may be sensed internally. These observations demonstrate that computer tracking is a sensitive method of analyzing animal behavior. It is further demonstrated that a significant response can be detected to a relatively weak stimulus in less than 5 min.
Collapse
Affiliation(s)
- D B Dunsenbery
- School of Applied Biology, Georgia institute of Technology, 30332, Atlanta, Georgia
| |
Collapse
|
19
|
Murayama T, Maruyama IN. Decision making in C. elegans chemotaxis to alkaline pH: Competition between two sensory neurons, ASEL and ASH. Commun Integr Biol 2013; 6:e26633. [PMID: 24563708 PMCID: PMC3917959 DOI: 10.4161/cib.26633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Monitoring of environmental and tissue pH is critical for animal survival. The nematode, Caenorhabditis elegans (C. elegans), is attracted to mildly alkaline pH, but avoids strongly alkaline pH. However, little is known about how the behavioral switching or decision making occurs. Genetic dissection and Ca2+ imaging have previously demonstrated that ASEL and ASH are the major sensory neurons responsible for attraction and repulsion, respectively. Here we report that unlike C. elegans wild type, mutants deficient in ASEL or ASH were repelled by mildly alkaline pH, or were attracted to strongly alkaline pH, respectively. These results suggest that signals through ASEL and ASH compete to determine the animal’s alkaline-pH chemotaxis. Furthermore, mutants with 2 ASEL neurons were more efficiently attracted to mildly alkaline pH than the wild type with a single ASEL neuron, indicating that higher activity of ASEL induces stronger attraction to mildly alkaline pH. This stronger attraction was overridden by normal activity of ASH, suggesting that ASH-mediated avoidance dominates ASEL-mediated attraction. Thus, C. elegans chemotactic behaviors to alkaline pH seems to be determined by signal strengths from the sensory neurons ASEL and ASH, and the behavior decision making seems to be the result of competition between the 2 sensory neurons.
Collapse
Affiliation(s)
- Takashi Murayama
- Okinawa Institute of Science and Technology Graduate University; Okinawa, Japan
| | - Ichi N Maruyama
- Okinawa Institute of Science and Technology Graduate University; Okinawa, Japan
| |
Collapse
|
20
|
Sassa T, Murayama T, Maruyama IN. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neurosci Lett 2013; 555:248-52. [PMID: 23769685 DOI: 10.1016/j.neulet.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
High pH is a noxious stimulus to animals, and their ability to avoid dangerously alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. The nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. In contrast, C. elegans mutants with structurally, developmentally, and/or functionally abnormal sensory cilia fail to avoid high pH, suggesting that sensory neurons in the cilia participate in sensing. Genetic rescue of the mutants indicates that ASH polymodal sensory neurons play a vital role in the process. Consistently, specific laser ablation of ASH neurons made animals insensitive to high pH. Furthermore, avoidance assays of other mutants also indicated that transient receptor potential vanilloid type (TRPV) ion channels encoded by osm-9 and ocr-2 are involved in sensing. Indeed, genetic rescue of osm-9 mutants by specifically expressing OSM-9 in ASH showed that TRPV channels play an essential role in sensing of high pH. Ca(2+) imaging in vivo also revealed that ASH neurons were activated by high pH stimulation, but ASH of osm-9 or ocr-2 mutants were not. These results demonstrate that in C. elegans, high pH is sensed by ASH nociceptors through opening of OSM-9/OCR-2 TRPV channels.
Collapse
Affiliation(s)
- Toshihiro Sassa
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | | | | |
Collapse
|
21
|
Murayama T, Takayama J, Fujiwara M, Maruyama IN. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr Biol 2013; 23:1007-12. [PMID: 23664973 DOI: 10.1016/j.cub.2013.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Survival requires that living organisms continuously monitor environmental and tissue pH. Animals sense acidic pH using ion channels and G-protein-coupled receptors (GPCRs), but monitoring of alkaline pH is not well understood. We report here that in the nematode Caenorhabditis elegans, a transmembrane receptor-type guanylyl cyclase (RGC), GCY-14, of the ASEL gustatory neuron, plays an essential role in the sensing of extracellular alkalinity. Activation of GCY-14 opens a cGMP-gated cation channel encoded by tax-2 and tax-4, resulting in Ca(2+) entry into ASEL. Ectopic expression of GCY-14 in other neurons indicates that it accounts for the alkalinity sensing capability. Domain-swapping and site-directed mutagenesis of GCY-14 reveal that GCY-14 functions as a homodimer, in which histidine of the extracellular domains plays a crucial role in alkalinity detection. These results argue that in addition to ion channels and GPCRs, RGCs also play a role in pH sensation in neurons.
Collapse
Affiliation(s)
- Takashi Murayama
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
22
|
Matsuura T, Izumi J, Hioki M, Nagaya H, Kobayashi Y. Sensory interaction between attractant diacetyl and repellent 2-nonanone in the nematode Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 319:285-95. [PMID: 23580469 DOI: 10.1002/jez.1795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/12/2012] [Accepted: 03/01/2013] [Indexed: 11/08/2022]
Abstract
In the nematode Caenorhabditis elegans, the odorant diacetyl is sensed by AWA sensory neurons in the amphid sensory organ and elicits an attractive response, whereas 2-nonanone is sensed by AWB amphid sensory neurons and elicits an avoidance response. In the present study, we report that nematodes exhibit a sensory interaction between the attractant diacetyl and repellent 2-nonanone. In the presence of food, the chemotactic response to 0.01% diacetyl in nematodes preexposed to 0.1% diacetyl was greater than that in nonexposed naive nematodes (P < 0.05). The response to diacetyl was also greater in nematodes preexposed to 3% 2-nonanone in the presence of food than that in naive nematodes (P < 0.01). In the absence of food, the response to diacetyl in nematodes preexposed to diacetyl or 2-nonanone was significantly lower than that in nonexposed control nematodes (P < 0.01). The avoidance response to 10% 2-nonanone in nematodes preexposed to each odorant in the presence or absence of food was lower than that in nonexposed nematodes (P < 0.05). To confirm the validity of our results, the chemotactic responses to diacetyl and 2-nonanone were observed using che-3, odr-4, and odr-10 mutants, which exhibited defective sensitivity to diacetyl or 2-nonanone. From the results of our experiments, we conclude that nematodes exhibit a sensory interaction between diacetyl and 2-nonanone and speculate that this interaction is driven by higher-level neuronal circuits that underlie sensory integration.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Laboratory of Behavioral Physiology, Faculty of Engineering, Iwate University, Morioka, Japan. matsuura@iwate‐u.ac.jp
| | | | | | | | | |
Collapse
|
23
|
Stein GM, Murphy CT. The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Front Genet 2012; 3:259. [PMID: 23226155 PMCID: PMC3509946 DOI: 10.3389/fgene.2012.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the molecular and genetic regulation of aging and longevity has been greatly augmented through studies using the small model system, C. elegans. It is important to test whether mutations that result in a longer life span also extend the health span of the organism, rather than simply prolonging an aged state. C. elegans can learn and remember both associated and non-associated stimuli, and many of these learning and memory paradigms are subject to regulation by longevity pathways. One of the more distressing results of aging is cognitive decline, and while no gross physical defects in C. elegans sensory neurons have been identified, the organism does lose the ability to perform both simple and complex learned behaviors with age. Here we review what is known about the effects of longevity pathways and the decline of these complex learned behaviors with age, and we highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Geneva M. Stein
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| | - Coleen T. Murphy
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| |
Collapse
|
24
|
Lockery SR. The computational worm: spatial orientation and its neuronal basis in C. elegans. Curr Opin Neurobiol 2011; 21:782-90. [PMID: 21764577 DOI: 10.1016/j.conb.2011.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/09/2011] [Accepted: 06/19/2011] [Indexed: 11/15/2022]
Abstract
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms.
Collapse
Affiliation(s)
- Shawn R Lockery
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
25
|
Wang D, Jones LM, Urwin PE, Atkinson HJ. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes. PLoS One 2011; 6:e17475. [PMID: 21408216 PMCID: PMC3049761 DOI: 10.1371/journal.pone.0017475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/03/2011] [Indexed: 12/05/2022] Open
Abstract
Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that have post-synaptic nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Dong Wang
- Centre for Plant Science, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Science, University of Leeds, Leeds, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Science, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | | |
Collapse
|
26
|
Sengupta P, Samuel ADT. Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 2009; 19:637-43. [PMID: 19896359 DOI: 10.1016/j.conb.2009.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
Abstract
The nematode Caenorhabditis elegans is an excellent model organism for a systems-level understanding of neural circuits and behavior. Advances in the quantitative analyses of behavior and neuronal activity, and the development of new technologies to precisely control and monitor the workings of interconnected circuits, now allow investigations into the molecular, cellular, and systems-level strategies that transform sensory inputs into precise behavioral outcomes.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| | | |
Collapse
|
27
|
Lans H, Dekkers MPJ, Hukema RK, Bialas NJ, Leroux MR, Jansen G. Signaling proteins that regulate NaCl [corrected] chemotaxis responses modulate longevity in C. elegans. Ann N Y Acad Sci 2009; 1170:682-7. [PMID: 19686212 DOI: 10.1111/j.1749-6632.2009.04362.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The lifespan of the nematode Caenorhabditis elegans is regulated by sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 14 Galpha subunits and a Ggamma subunit. We have identified seven sensory Galpha subunits that modulate lifespan. Genetic experiments suggest that multiple sensory signaling pathways exist that modulate lifespan and that some G proteins function in multiple pathways, most of which, but probably not all, involve insulin/IGF-1 like signaling. Interestingly, of the sensory G proteins involved in regulating lifespan, only one Galpha probably functions directly in the detection of sensory cues. The other G proteins seem to function in modulating the sensitivity of the sensory neurons. We hypothesize that in addition to the mere detection of sensory cues, regulation of the sensitivity of sensory neurons also plays a role in the regulation of lifespan.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, and Center for Biomedical Genetics, Erasmus MC, CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Xing X, Du M, Zhang Y, Wang D. Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans. J Environ Sci (China) 2009; 21:1684-1694. [PMID: 20131599 DOI: 10.1016/s1001-0742(08)62474-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 micromol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 micromol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 micromol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.
Collapse
Affiliation(s)
- Xiaojuan Xing
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing 210009, China
| | | | | | | |
Collapse
|
29
|
Hukema RK, Rademakers S, Jansen G. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem 2008; 15:829-36. [PMID: 18984564 DOI: 10.1101/lm.994408] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While naïve Caenorhabditis elegans individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that C. elegans displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined with a negative stimulus, e.g., a repellent, or in the absence of food. By testing serotonin and/or dopamine signaling mutants and rescue by exogenously supplying these neurotransmitters, we found that serotonin and dopamine play a role during the plasticity response, while serotonin is also required during development. In addition, we also show that glutamate plays an important role in the response to NaCl, both in chemoattraction to NaCl and in gustatory plasticity. Thus, C. elegans can associate NaCl with negative stimuli using dopaminergic, serotonergic, and glutamatergic neurotransmission. Finally, we show that prolonged starvation enhances gustatory plasticity and can induce avoidance of NaCl in most gustatory plasticity mutants tested. Only mutation of the glutamate-gated Cl(-) channel gene avr-15 affected starvation-enhanced gustatory plasticity. These results suggest that starvation induces avoidance of NaCl largely independent of the normal gustatory plasticity mechanism.
Collapse
Affiliation(s)
- Renate K Hukema
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Frøkjær-Jensen C, Ailion M, Lockery SR. Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans. PLoS One 2008; 3:e2467. [PMID: 18560547 PMCID: PMC2413426 DOI: 10.1371/journal.pone.0002467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/08/2008] [Indexed: 11/18/2022] Open
Abstract
Background Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH4Ac). NH4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. Methodology/Main Findings Here we show that over a range of concentrations NH4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH4Cl) are not detected as Na+ and Cl− specific stimuli, respectively. Conclusions/Significance These findings clarify the behavioral response of C. elegans to NH4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
| | - Michael Ailion
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Shawn R. Lockery
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
31
|
Hallem EA, Sternberg PW. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008; 105:8038-43. [PMID: 18524955 PMCID: PMC2430355 DOI: 10.1073/pnas.0707469105] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Indexed: 11/18/2022] Open
Abstract
Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.
Collapse
Affiliation(s)
- Elissa A Hallem
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
32
|
A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008; 105:8044-9. [PMID: 18524954 DOI: 10.1073/pnas.0707607105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (<1% O2) also suppresses CO2 avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies.
Collapse
|
33
|
Adachi R, Wakabayashi T, Oda N, Shingai R. Modulation of Caenorhabditis elegans chemotaxis by cultivation and assay temperatures. Neurosci Res 2007; 60:300-6. [PMID: 18192049 DOI: 10.1016/j.neures.2007.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/22/2007] [Accepted: 11/26/2007] [Indexed: 11/20/2022]
Abstract
The chemotaxis behaviors of the nematode Caenorhabditis elegans cultivated at various temperatures (15 degrees C, 20 degrees C and 25 degrees C) were examined at various temperatures (10 degrees C, 15 degrees C, 20 degrees C and 25 degrees C) to determine the multi-sensory integration of physical (thermal) and chemical sensory information within its nervous system. Chemotaxis behavior toward sodium acetate and ammonium chloride were differently affected by both assay and cultivation temperatures, suggesting that the temperature effect on chemotaxis is not general, but rather distinctive for each chemosensory pathway. Since thermosensory cues are likely encountered constantly in C. elegans, we supposed that the chemotaxis behaviors of worms are achieved by the integration of chemo- and thermosensory information. To verify the possible contribution of thermosensory function in chemotaxis, we examined the chemotaxis behaviors of ttx-1(p767) mutant worms with defective AFD thermosensory neurons. The chemotaxis behaviors toward sodium acetate or ammonium chloride of mutant worms cultivated at 20 degrees C and 25 degrees C were reduced relative to those of wild-type worms. These results indicate the important role of multi-sensory integration of chemosensory and thermosensory information in chemotaxis behavior of the C. elegans.
Collapse
Affiliation(s)
- Ryota Adachi
- Laboratory of Bioscience, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | | | | | | |
Collapse
|
34
|
Sengupta P, Colbert HA, Kimmel BE, Dwyer N, Bargmann CI. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans. CIBA FOUNDATION SYMPOSIUM 2007; 179:235-44; discussion 244-50. [PMID: 8168378 DOI: 10.1002/9780470514511.ch15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The small soil nematode Caenorhabditis elegans has only 302 neurons in its entire nervous system, so it is possible to analyse the functions of individual neurons in the animal's behaviour. We are using behavioural, cellular and genetic analyses of chemotactic responses to find out how olfactory behaviour patterns are generated and regulated. Single chemosensory neurons in C. elegans can recognize several different attractive odorants that are distinguished by the animal. Distinct sets of chemosensory neurons detect high and low concentrations of a single odorant. Odorant responses adapt after prolonged exposure to an odorant; this adaptation is odorant specific and reversible. Mutants with defects in odorant responses have been identified. Some genes appear to be necessary for the development or function of particular kinds of sensory neurons. Other genes have effects that suggest that they participate in odorant reception or signal transduction.
Collapse
Affiliation(s)
- P Sengupta
- Program in Developmental Biology, University of California, San Francisco 94143-0452
| | | | | | | | | |
Collapse
|
35
|
Etchberger JF, Lorch A, Sleumer MC, Zapf R, Jones SJ, Marra MA, Holt RA, Moerman DG, Hobert O. The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev 2007; 21:1653-74. [PMID: 17606643 PMCID: PMC1899474 DOI: 10.1101/gad.1560107] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Taste receptor cells constitute a highly specialized cell type that perceives and conveys specific sensory information to the brain. The detailed molecular composition of these cells and the mechanisms that program their fate are, in general, poorly understood. We have generated serial analysis of gene expression (SAGE) libraries from two distinct populations of single, isolated sensory neuron classes, the gustatory neuron class ASE and the thermosensory neuron class AFD, from the nematode Caenorhabditis elegans. By comparing these two libraries, we have identified >1000 genes that define the ASE gustatory neuron class on a molecular level. This set of genes contains determinants of the differentiated state of the ASE neuron, such as a surprisingly complex repertoire of transcription factors (TFs), ion channels, neurotransmitters, and receptors, as well as seven-transmembrane receptor (7TMR)-type putative gustatory receptor genes. Through the in vivo dissection of the cis-regulatory regions of several ASE-expressed genes, we identified a small cis-regulatory motif, the "ASE motif," that is required for the expression of many ASE-expressed genes. We demonstrate that the ASE motif is a binding site for the C2H2 zinc finger TF CHE-1, which is essential for the correct differentiation of the ASE gustatory neuron. Taken together, our results provide a unique view of the molecular landscape of a single neuron type and reveal an important aspect of the regulatory logic for gustatory neuron specification in C. elegans.
Collapse
Affiliation(s)
- John F. Etchberger
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adam Lorch
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Monica C. Sleumer
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Richard Zapf
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Steven J. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Oliver Hobert
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
- Corresponding author.E-MAIL ; FAX (212) 342-1810
| |
Collapse
|
36
|
Matsuura T, Endo S, Iwamoto R, Takahashi H, Ichinose M. Developmental changes in chemotactic response and choice of two attractants, sodium acetate and diacetyl, in the nematode Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:920-7. [PMID: 17376724 DOI: 10.1016/j.cbpa.2007.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/13/2007] [Accepted: 02/18/2007] [Indexed: 11/20/2022]
Abstract
The chemotactic behavior of the nematode Caenorhabditis elegans to chemical attractants, water-soluble sodium acetate and odorant diacetyl, was investigated using nematodes at various developmental stages to examine the effects of postembryonic development on chemotactic response and spontaneous locomotion. The chemotactic responses to attractants increased as development progressed, and the largest responses to either 1.0 M sodium acetate or 0.1% diacetyl were seen at the young adult (YA) or day adult (A1) stage, respectively. Responses to the chemicals declined thereafter in-line with increasing age. The chemotaxis indices for attractants correlated with activity of spontaneous locomotion (p<0.01), suggesting that a change in spontaneous locomotion is one of the factors involved with the change in chemotactic responses during development. We also investigated the effect of aging on attractant choice by the simultaneous presentation of 0.6 M sodium acetate and 0.1% diacetyl. In the presence of both attractants, the fraction of larval animals at the sodium acetate location was greater than that at the diacetyl location (p<0.05). The fractions of YA animals that gathered at either location were almost identical, whereas the fraction of adult animals at the diacetyl location was greater than that at the sodium acetate location (p<0.05). The patterns of attractant choice of the long-lived daf-2 mutants and short lifespan mev-1 mutants showed the same tendency as those of wild type nematodes in the presence of both attractants. These results suggest that a change in the neuronal mechanisms controlling attractant choice and preference occurs during developmental progression.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda Morioka 020-8551, Japan.
| | | | | | | | | |
Collapse
|
37
|
Sengupta P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch 2007; 454:721-34. [PMID: 17206445 DOI: 10.1007/s00424-006-0196-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
C. elegans recognizes and discriminates among hundreds of chemical cues using a relatively compact chemosensory nervous system. Chemosensory behaviors are also modulated by prior experience and contextual cues. Because of the facile genetics and genomics possible in this organism, C. elegans provides an excellent system in which to explore the generation of chemosensory behaviors from the level of a single gene to the motor output. This review summarizes the current knowledge on the molecular and neuronal substrates of chemosensory behaviors and chemosensory behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
38
|
Wolkow CA. Identifying factors that promote functional aging in Caenorhabditis elegans. Exp Gerontol 2006; 41:1001-6. [PMID: 16908112 DOI: 10.1016/j.exger.2006.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 06/01/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
A major feature of aging is a reduction in muscle strength from sarcopenia, the loss of muscle mass. Sarcopenia impairs physical ability, reduces quality of life and increases the risk of fall and injury. Since aging is a process of stochastic decline, there may be many factors that impinge on the progression of sarcopenia. Possible factors that may promote muscle decline are contraction-related injury and oxidative stress. However, relatively little is understood about the cellular pathways affecting muscle aging, in part because lifespan studies are difficult to conduct in species with large muscles, such as rodents and primates. For this reason, shorter-lived invertebrate models of aging may be more useful for unraveling causes of sarcopenia and functional declines during aging. Recent studies have examined both physiological and genetic factors that affect aging-related declines in Caenorhabditis elegans nematodes. In C. elegans, aging leads to significant functional declines that correlate with muscle deterioration, similar to those documented for longer-lived vertebrates. This article will examine the current research into aging-related functional declines in this species, focusing on recent studies of locomotory and feeding decline during aging in the nematode, C. elegans.
Collapse
Affiliation(s)
- Catherine A Wolkow
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Szewczyk NJ, Mancinelli RL, McLamb W, Reed D, Blumberg BS, Conley CA. Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle Columbia. ASTROBIOLOGY 2005; 5:690-705. [PMID: 16379525 DOI: 10.1089/ast.2005.5.690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.
Collapse
|
40
|
Shingai R, Wakabayashi T, Sakata K, Matsuura T. Chemotaxis of Caenorhabditis elegans during simultaneous presentation of two water-soluble attractants, l-lysine and chloride ions. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:308-17. [PMID: 16165380 DOI: 10.1016/j.cbpa.2005.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Lysine and chloride ions are water-soluble attractants for Caenorhabditis elegans. When chemotaxis behavior to either of these attractants was assayed separately, the radial concentration gradients of 3 M lysine and 0.1 M ammonium chloride had similar potencies for attracting worms. However, when the concentration gradients of lysine and ammonium chloride at these concentrations were presented simultaneously, worms preferred lysine to ammonium chloride more than expected from the results obtained in separate experiments, suggesting the presence of an interaction between these two sensory information pathways within the nervous system. Chemotaxis behavior toward the radial concentration gradient of one of these attractants superimposed on a uniform concentration of the other attractant showed that the chemotaxis was augmented or attenuated by the ammonium chloride background depending on the background concentration, and attenuated by the lysine background, further supporting the interaction between the two sensory information pathways.
Collapse
Affiliation(s)
- Ryuzo Shingai
- Laboratory of Bioscience, Faculty of Engineering, Iwate University, 4 Ueda, Morioka 020-8551, Japan.
| | | | | | | |
Collapse
|
41
|
Menzel R, Stürzenbaum S, Bärenwaldt A, Kulas J, Steinberg CEW. Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8324-32. [PMID: 16294870 DOI: 10.1021/es050884s] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Humic materials are complex organic molecules constituting the most abundant source of natural organic matter (NOM) in freshwater and soil ecosystems. Recent advances have identified that they interfere with biological systems, via the induction of biotransformation enzymes, the inhibition of photosynthetic oxygen release (in freshwater plants), the production of internal oxidative stress, or through the feminization of fish and amphibians. The nematode model organism Caenorhabditis elegans was chosen to investigate whether a natural and a synthetic humic material induce (i) a behavioral attraction, (ii) the reproduction, and (iii) a response in whole genome transcriptional expression. The phenomenological attractant experiments provided evidence that both humic material sources attract the worm and exert distinct chemical cues. In the reproduction assay, only the highest concentration (32 mg/L DOC of Fuchskuhle NOM, 38 mg/L DOC of HS 1500) resulted in a decrease in brood size, highlighting an overall intrinsic tolerance toward humic material. Finally, oligonucleotide-based whole genome DNA microarray experiments were performed from control and humic material treated worms. Significant transcriptional changes (exceeding a 2-fold increase or decrease) were identified in chemosensors, olfactory receptors, as well as enzymes of the biotransformation system (cytochromes P450, UDP-glucuronosyltransferases, glutathione S-transferases), thereby confirming that humic material is recognized as an environmental signaling chemical.
Collapse
Affiliation(s)
- Ralph Menzel
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | | | | | | | | |
Collapse
|
42
|
Abstract
A current challenge in neuroscience is to bridge the gaps between genes, proteins, neurons, neural circuits, and behavior in a single animal model. The nematode Caenorhabditis elegans has unique features that facilitate this synthesis. Its nervous system includes exactly 302 neurons, and their pattern of synaptic connectivity is known. With only five olfactory neurons, C. elegans can dynamically respond to dozens of attractive and repellent odors. Thermosensory neurons enable the nematode to remember its cultivation temperature and to track narrow isotherms. Polymodal sensory neurons detect a wide range of nociceptive cues and signal robust escape responses. Pairing of sensory stimuli leads to long-lived changes in behavior consistent with associative learning. Worms exhibit social behaviors and complex ultradian rhythms driven by Ca(2+) oscillators with clock-like properties. Genetic analysis has identified gene products required for nervous system function and elucidated the molecular and neural bases of behaviors.
Collapse
Affiliation(s)
- Mario de Bono
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
43
|
Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, Hanselman KB, Goldberg IG, Wolkow CA. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 2005; 59:1251-60. [PMID: 15699524 PMCID: PMC1458366 DOI: 10.1093/gerona/59.12.1251] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits on behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In contrast, sensory ability appeared well maintained during aging. Age-related behavioral declines were delayed in animals with mutations in the daf-2/insulin-like pathway governing longevity. A decline in muscle tissue integrity was correlated with the onset of age-related behavioral deficits, although significant muscle deterioration was not. Treatment with a muscarinic agonist significantly improved locomotory behavior in aged animals, indicating that improved neuromuscular signaling may be one strategy for reducing the severity of age-related behavioral impairments.
Collapse
Affiliation(s)
- Charles F Glenn
- Laboratory of Neuosciences, National Institue on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.
Collapse
Affiliation(s)
- J C Bettinger
- Programs in Biological Science and Neuroscience, Gallo Center and Department of Neurology, University of California, San Francisco, UCSF School of Medicine, Emeryville, CA 94608, USA
| | | |
Collapse
|
45
|
Matsuura T, Oikawa T, Wakabayashi T, Shingai R. Effect of simultaneous presentation of multiple attractants on chemotactic response of the nematode Caenorhabditis elegans. Neurosci Res 2004; 48:419-29. [PMID: 15041195 DOI: 10.1016/j.neures.2003.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 12/18/2003] [Indexed: 11/24/2022]
Abstract
Chemotactic behaviors of the nematode, Caenorhabditis elegans in response to chemical attractants, such as water-soluble sodium acetate and an odorant diacetyl, which were sensed by different sensory neurons, were investigated using various concentrations of these chemical attractants. In the presence of only sodium acetate attractant, the fraction of animals that were roaming around the outside of the attractant and original locations correlated negatively with the chemotaxis index for sodium acetate (P < 0.01). In contrast, the fraction of animals that remained in the original location correlated negatively with the chemotaxis index in the presence of only diacetyl attractant (P < 0.05). These results indicate that the manner of chemotaxis responses differs between sodium acetate and diacetyl. In order to investigate the effect of multiple attractants on chemotactic behaviors, the chemotactic responses to simultaneous presentation of sodium acetate and diacetyl were examined. The fraction of animals that gathered at the 0.7 M sodium acetate location was greater than that at the 0.1% diacetyl location in the presence of both attractants (P < 0.05), although the chemotaxis indexes for 0.7 M sodium acetate and 0.1% diacetyl were similar in the presence of a single attractant. On the other hand, the fraction of animals that gathered at the 0.02% diacetyl location was greater than that at the 0.1M sodium acetate location in the presence of both attractants (P < 0.05), although the chemotaxis indexes for 0.02% diacetyl and 0.1M sodium acetate were similar in the presence of a single attractant. These results suggest the existence of excitatory and/or inhibitory connections in the neuronal circuit for attractant selection, and that the efficacy of these connections may change according to the concentrations of both attractants.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Laboratory of Bioscience, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | | | | | | |
Collapse
|
46
|
O'Halloran DM, Burnell AM. An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 2004; 127:375-85. [PMID: 14636024 DOI: 10.1017/s0031182003003688] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We tested the chemotactic responses of dauer juvenile stages (DJs) of the insect parasitic nematode Heterorhabditis bacteriophora to a variety of compounds that are known to be highly attractive or highly repellent to Caenorhabditis elegans. While H. bacteriophora DJs respond to alcohols and some aromatic compounds as well as to host metabolites such as uric acid and CO2, the most notable difference in the responses of these two nematodes is that H. bacteriophora DJs are unresponsive to a large number of compounds which C. elegans finds highly attractive. The latter compounds are typical by-products of bacterial metabolism and include aldehydes, esters, ketones and short-chain alcohols. While C. elegans finds long-chain alcohols (e.g. 1-heptanol and 1-octanol) repellent and short-chain alcohols highly attractive, H. bacteriophora DJs are strongly attracted to 1-heptanol, 1-octanol and 1-nonanol and find short-chain alcohols to be only slightly attractive. Parasitic-stage H. bacteriophora nematodes show a very weak chemotactic response to volatile molecules that DJs find highly attractive. Our results suggest that, associated with the adoption of a parasitic mode of life by Heterorhabditis, there was an adaptive change in chemotactic behaviour of the infective stages, resulting in a decreased sensitivity to volatile by-products of bacterial metabolism and an increased sensitivity towards long-chain alcohols and other insect-specific volatiles and possibly also to herbivore-induced plant volatiles.
Collapse
Affiliation(s)
- D M O'Halloran
- Institute of Bioengineering and Agroecology and Department of Biology, National University of Ireland Maynooth, Maynooth, Co.Kildare, Ireland
| | | |
Collapse
|
47
|
Koga M, Ohshima Y. The C.elegans ceh-36 Gene Encodes a Putative Homemodomain Transcription Factor Involved in Chemosensory Functions of ASE and AWC Neurons. J Mol Biol 2004; 336:579-87. [PMID: 15095973 DOI: 10.1016/j.jmb.2003.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Chemotaxis to water-soluble chemicals such as sodium ion is an important behavior of Caenorhabditis elegans for seeking food, and ASE chemosensory neurons have a major role in this behavior. We isolated mutants defective in chemotaxis to sodium acetate. We show here that among them ks86 had a mutation in the ceh-36 gene. ceh-36 :: gfp reporter constructs were expressed in ASE and AWC neurons. In a mutant of the che-1 gene, which encodes another transcription factor and is required for specification of ASE neurons, expression of the ceh-36 :: gfp reporter in ASE is lost. This indicates that the ceh-36 gene functions downstream of the che-1 gene in ASE. In the ceh-36(ks86) mutant, expression of the tax-2 gene encoding a cyclic nucleotide-gated channel was reduced in ASE and AWC. This affords an explanation for defects of the ceh-36 mutant in the chemotaxis mediated by ASE and AWC. When a ceh-36 cDNA was expressed in an adult ceh-36 mutant by a heat shock promoter, chemotaxis to sodium acetate was recovered. These results suggest that ceh-36 is required for functions, and not for development, of ASE.
Collapse
Affiliation(s)
- Makoto Koga
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
48
|
Damianova A, Baicheva O, Salkova D, Sivriev I, Lihareva N. Evaluation of changes in the element content and biomass of invaded with Meloidogyne arenaria Tiny Tim tomato plants under NH4VO3 treatment. ACTA BIOLOGICA HUNGARICA 2003; 54:373-84. [PMID: 14711041 DOI: 10.1556/abiol.54.2003.3-4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parasite-host system Meloidogyne arenaria--Tiny Tim tomato plants has been studied in order to investigate the influence of the process of invasion on the chemical composition and biomass of plants. The concentrations of seven chemical elements Cu, Zn, Mg, K, Na, Mn and Fe have been determined using AAS in controls and invaded plants, and their changes have been evaluated under treatment with NH4VO3 in three different concentrations 0.01, 0.1 and 0.13 mg/100 ml H2O. The process of treatment with NH4VO3 disbalances significantly the trace element content of plants. The lowest concentration (0.01 mg NH4VO3) causes bigger changes in the concentrations of Mn, Fe and Na in non-invaded plants. The highest concentration (0.13 mg NH4VO3) balances the content of the elements back to their levels in the control plants for the elements Zn, Fe and Na. The pure effect of the process of invasion with Meloidogyne arenaria on the biomass (leaves, stems, roots and total biomass) of Tiny Tim plants is expressed in a significant increasing, mainly due to the development of the parasites. After treatment with different concentrations of NH4VO3 the decreasing in the biomass of leaves, stems and roots is observed which reflects on the total biomass of plants. The concentration of NH4VO3 eliminates the unfavourable changes not only in the chemical content of plants but also in their biomass. It could be taken into consideration as an alternative method used instead of treatment with nematocides.
Collapse
Affiliation(s)
- Anna Damianova
- Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Shosse Bld., Sofia 1784, Bulgaria.
| | | | | | | | | |
Collapse
|
49
|
Battu G, Hoier EF, Hajnal A. The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development. Development 2003; 130:2567-77. [PMID: 12736202 DOI: 10.1242/dev.00497] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively regulates RAS/MAPK signalling during vulval induction and the olfaction of volatile attractants. Epistasis analysis indicates that SRA-13 inhibits the RAS/MAPK pathway at the level or upstream of MAPK. In both tissues, the vulval precursor cells and the chemosensory neurones, SRA-13 acts through the GPA-5 Galpha protein subunit, suggesting a common mechanism of crosstalk. Moreover, we find that vulval induction is repressed by food withdrawal during larval development and that SRA-13 activity is required for the suppression of vulval induction in response to food starvation. Thus, SRA-13 may serve to adapt the activity of the RAS/MAPK pathway to environmental conditions.
Collapse
Affiliation(s)
- Gopal Battu
- Zoologisches Institut, Universitaet Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Uchida O, Nakano H, Koga M, Ohshima Y. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development 2003; 130:1215-24. [PMID: 12588839 DOI: 10.1242/dev.00341] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemotaxis to water-soluble chemicals such as NaCl is an important behavior of C. elegans when seeking food. ASE chemosensory neurons have a major role in this behavior. We show that che-1, defined by chemotaxis defects, encodes a zinc-finger protein similar to the GLASS transcription factor required for photoreceptor cell differentiation in Drosophila, and that che-1 is essential for specification and function of ASE neurons. Expression of a che-1::gfp fusion construct was predominant in ASE. In che-1 mutants, expression of genes characterizing ASE such as seven-transmembrane receptors, guanylate cyclases and a cyclic-nucleotide gated channel is lost. Ectopic expression of che-1 cDNA induced expression of ASE-specific marker genes, a dye-filling defect in neurons other than ASE and dauer formation.
Collapse
Affiliation(s)
- Okiko Uchida
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|