1
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
2
|
Yaparla A, Reeves P, Grayfer L. Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. Front Immunol 2020; 10:3015. [PMID: 32038608 PMCID: PMC6987381 DOI: 10.3389/fimmu.2019.03015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Phillip Reeves
- School Without Walls High School, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Abstract
The X. laevis sub-capsular liver is thought to be the principal hematopoietic site of Xenopodinae species from early development and, in case of certain species, into adulthood. The Xenopus bone marrow appears to be comprised of precursor cells committed to myeloid lineages, such as macrophage- and granulocyte-progenitor cells. With alarming increases in the contribution of pathogenic infections to the global amphibian declines, now more than ever a better understanding of the mechanisms controlling amphibian immune cell ontogeny and functionality is warranted. Accordingly, here we detail the isolation and culture of the X. laevis hematopoietic cells from the sub-capsular liver and bone marrow. Considering the immunological roles attributed to these amphibian organs, the respective cell isolation protocols described here will be pertinent to garnering further insights into the coordinated regulation of amphibian hematopoiesis and immune defense mechanisms.
Collapse
|
4
|
Yaparla A, Wendel ES, Grayfer L. The unique myelopoiesis strategy of the amphibian Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:136-143. [PMID: 27234705 DOI: 10.1016/j.dci.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs' liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
5
|
Grayfer L, Robert J. Amphibian macrophage development and antiviral defenses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:60-7. [PMID: 26705159 PMCID: PMC4775336 DOI: 10.1016/j.dci.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 05/29/2023]
Abstract
Macrophage lineage cells represent the cornerstone of vertebrate physiology and immune defenses. In turn, comparative studies using non-mammalian animal models have revealed that evolutionarily distinct species have adopted diverse molecular and physiological strategies for controlling macrophage development and functions. Notably, amphibian species present a rich array of physiological and environmental adaptations, not to mention the peculiarity of metamorphosis from larval to adult stages of development, involving drastic transformation and differentiation of multiple new tissues. Thus it is not surprising that different amphibian species and their respective tadpole and adult stages have adopted unique hematopoietic strategies. Accordingly and in order to establish a more comprehensive view of these processes, here we review the hematopoietic and monopoietic strategies observed across amphibians, describe the present understanding of the molecular mechanisms driving amphibian, an in particular Xenopus laevis macrophage development and functional polarization, and discuss the roles of macrophage-lineage cells during ranavirus infections.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Grayfer L, Robert J. Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver. J Innate Immun 2013; 5:531-42. [PMID: 23485675 DOI: 10.1159/000346928] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
Macrophage precursors originate from and undergo lineage commitment within designated sites of hematopoiesis, such as the mammalian bone marrow. These cells subsequently differentiate in response to stimulation with macrophage colony-stimulating factor-1 (CSF-1). The amphibian bone marrow, unlike that of mammals, has been overlooked as a source of leukocyte precursors in favor of the liver subcapsular region, where hematopoiesis occurs in anurans. Here we report that the bone marrow rather than the liver periphery provides macrophage progenitors to the amphibian Xenopus laevis. We identified the amphibian CSF-1, examined its gene expression in developing and virally infected X. lae vis and produced it in recombinant form (rXlCSF-1). This rXlCSF-1 did not bind or elicit proliferation/differentiation of subcapsular liver cells. Surprisingly, a subpopulation of bone marrow cells engaged this growth factor and formed rXlCSF-1 concentration-dependent colonies in semisolid medium. Furthermore, rXlCSF-1-treated bone marrow (but not liver) cultures comprised of cells with characteristic macrophage morphology and high gene expression of the macrophage marker CSF-1 receptor. Together, our findings indicate that in contrast to all other vertebrates studied to date, committed Xenopus macrophage precursor populations are not present at the central site of hematopoiesis, but reside in the bone marrow.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, N.Y., USA
| | | |
Collapse
|
7
|
Nogawa-Kosaka N, Sugai T, Nagasawa K, Tanizaki Y, Meguro M, Aizawa Y, Maekawa S, Adachi M, Kuroki R, Kato T. Identification of erythroid progenitors induced by erythropoietic activity in Xenopus laevis. J Exp Biol 2011; 214:921-7. [DOI: 10.1242/jeb.050286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxygen is essential for the survival of animals. Red blood cells in the circulation, i.e. peripheral erythrocytes, are responsible for transporting oxygen to tissues. The regulation of erythropoiesis in vertebrates other than mammals is yet to be elucidated. Recently we identified erythropoietin, a primary regulator of erythropoiesis, in Xenopus laevis, which should enable us to identify target cells, including erythroid progenitors, and to investigate the production and development of erythroid cells in amphibians. Here, we established a semi-solid colony-forming assay in Xenopus laevis to clarify the existence of colony-forming unit-erythroid cells, the functional erythroid progenitors identified in vitro. Using this assay, we showed that recombinant xlEPO induces erythroid colony formation in vitro and detected an increased level of erythropoietin activity in blood serum during acute anemic stress. In addition, our study demonstrated the possible presence of multiple, non-xlEPO, factors in anemic serum supportive of erythroid colony formation. These results indicate that erythropoiesis mediated by erythropoietin is present in amphibian species and, furthermore, that the regulatory mechanisms controlling peripheral erythrocyte number may vary among vertebrates.
Collapse
Affiliation(s)
- Nami Nogawa-Kosaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Tatsuhisa Sugai
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Kazumichi Nagasawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Yuta Tanizaki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Mizue Meguro
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Youichi Aizawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Shun Maekawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Motoyasu Adachi
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Ryota Kuroki
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Takashi Kato
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Center for Advanced Biomedical Sciences, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
8
|
Abstract
The spleen of Rana perezi is encapsulated by connective tissue and shows by light microscopy two areas with no obvious border: the white pulp and the red pulp. The white pulp-lymphoid clusters are scattered throughout the organ and contain lymphocytes, reticular cells, and some plasma cells. The red pulp displays two different portions. The predominant region consists of reticular cells, lymphocytes, a variety of other leucocytes, and cells undergoing division. This area possibly performs a haemopoietic function. The smaller portion of the red pulp is characterized by reticular-phagocytic cells and may be haemocaretic in its function. Macrophages and pigmented cells occur in both white and red pulp. The organization of the spleen of R. perezi can be considered as a transitional or intermediate state between the primitive condition seen in certain fishes and amphibians and the more complex organ of ammiotes.
Collapse
Affiliation(s)
- R Alvarez
- Universidad de Leon, Departamento de Biologia Celular y Anatomia, Leon, Spain
| |
Collapse
|