1
|
Ge L, Wei Y, Ye Z, Jiang Z, Liu Y, Wang Y, Xu X, Wang J, Yang J, Sun L, Wang T. Non-coding RNA regulatory networks underlying intestinal degradation in Apostichopus japonicus under starvation stress: Insights from transcriptome analysis. Int J Biol Macromol 2025; 307:142069. [PMID: 40112977 DOI: 10.1016/j.ijbiomac.2025.142069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Starvation stress is one of the most common environmental challenges faced by aquatic animals, often leading to compensatory growth, a widespread phenomenon in the animal kingdom, especially among aquatic species. The sea cucumber (Apostichopus japonicus), a key marine economic species in China, has been shown to utilize long non-coding RNAs (lncRNAs) in responding to environmental changes, pathogen infections, and tissue regeneration. In this study, strand-specific high-throughput sequencing was employed to analyze transcriptomic data from degenerated intestines of A. japonicus under starvation conditions. High-quality lncRNAs were identified and classified, and key differentially expressed mRNAs and lncRNAs associated with intestinal degradation were screened. A gene interaction network model based on the competing endogenous RNA (ceRNA) theory was then constructed. The analysis revealed that the "AjSOX9/Aja-miR-2012-5p/MSTRG.2956.1 and MSTRG.5699.1" axes, as well as the "AjWNT9B/Aja-miR-200-3p/MSTRG.19757.1 and MSTRG.21788.1" axes, play significant roles in degraded intestines and may promote intestinal regeneration during compensatory growth. Additionally, the "AjFABP2/Aja-miR-9-5p/MSTRG.9667.1" axis appears to regulate energy metabolism under starvation stress. These findings provide valuable insights into the non-coding gene regulatory networks in invertebrates under starvation stress and offer a scientific foundation for developing stress-resistant sea cucumber strains, contributing to the sustainable development of the sea cucumber aquaculture industry.
Collapse
Affiliation(s)
- Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yuting Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yibo Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
2
|
Logan-Garbisch T, Fryer E, Seyahi LS, Rogel-Hernandez L, Rhee SY, Goodman MB. Satiety, TAX-4, and OSM-9 Tune the Attraction of C. elegans Nematodes to Microbial Fermentation Products. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639594. [PMID: 40060391 PMCID: PMC11888315 DOI: 10.1101/2025.02.21.639594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Animals are sensitive to selective pressures associated with nutrient acquisition, underscoring the evolutionary significance of chemosensation in foraging and its intersection with satiety. For the model nematode Caenorhabditis elegans, isoamyl alcohol (3-methyl-1-butanol) and 2-methyl-1-butanol are produced by microbial fermentation and present in bacterial food sources collected from the natural environments. Both compounds, which are structural isomers of one another, elicit strong attraction in laboratory settings. Using laboratory chemotaxis assays, we show that starvation attenuates attraction to both compounds. Well-fed C. elegans is largely insensitive to the biosynthetic precursors of both alcohols, with the exception of 4-methyl-2-oxovaleric acid, which is a mild repellent. C. elegans chemosensation relies on expression of tax-4 cyclic nucleotide-gated (CNG) and osm-9 transient receptor potential, vanilloid (TRPV) ion channels and animals lacking both genes are taste- and smell-blind. Animals lacking tax-4 fail to attract isoamyl alcohol and 2-methyl-1-butanol and those lacking osm-9 exhibit stronger attraction than the wild-type. Starvation not only attenuates attraction, but also enhances repulsion to 4-methyl-2-oxovaleric acid and uncovers repulsion in tax-4 mutants absent in their well-fed counterparts. Collectively, these findings implicate satiety in regulating response strength, tax-4-dependent chemotaxis in attraction to isoamyl alcohol and 2-methyl-1-butanol, and osm-9-dependent chemotaxis in suppressing responses to biosynthetic precursors.
Collapse
Affiliation(s)
- Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University
- Neuroscience Program, Stanford University
| | - Emily Fryer
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Plant Biology, Carnegie Institution for Science
| | - Lara Selin Seyahi
- Department of Molecular and Cellular Physiology, Stanford University
| | | | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University
| |
Collapse
|
3
|
Shimizu K, Ashida K, Hotta K, Oka K. Food deprivation changes chemotaxis behavior in Caenorhabditis elegans. Biophys Physicobiol 2020; 16:167-172. [PMID: 31984168 PMCID: PMC6975978 DOI: 10.2142/biophysico.16.0_167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/19/2019] [Indexed: 12/01/2022] Open
Abstract
Exploring for food is important in food-deprived condition. Chemotaxis is one of the important behaviors to search food. Although chemotactic strategies in C. elegans have been well investigated: the pirouette and the weathervane strategies, the change of the chemotactic strategy by food deprivation is largely unclear. Here, we show the change of chemotactic strategy by food deprivation, especially for isoamyl alcohol. To compare chemotaxis under different food-deprivation period, we showed that worms change their chemotactic behaviors by food deprivation. The worms with 1-h food-deprivation change the weathervane strategy. On the other hand, 6-h food deprived animals change the pirouette strategy. These results demonstrate that worms change chemotactic strategy different way depend on period of food deprivation.
Collapse
Affiliation(s)
- Kei Shimizu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Keita Ashida
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.,Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|