1
|
de Figueiredo AC, Prado DMA, Floreste FR, Garcia Neto PG, Gomes FR, de Carvalho JE. Fasting elicits immune modulation and leukocyte redistribution in bullfrogs (Lithobates catesbeianus). Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111873. [PMID: 40312003 DOI: 10.1016/j.cbpa.2025.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
An integrated range of behavioral, physiological, and biochemical adjustments reduces metabolic expenditure and energy utilization during fasting to maintain homeostasis. In order to cope with these adjustments, several vertebrates can modulate immune function and corticosterone secretion while fasting to save energy. However, in ectothermic animals that can fast for longer periods due to their low metabolic rate, the underlying corticosterone and immune modulation is still not well understood. This study aimed to investigate corticosterone and immune modulation during fasting in the bullfrog (Lithobates catesbeianus). Bullfrogs were divided into two treatments: a 'control group', fed twice a week with fish feed for 31 days; and a 'fasting group', which remained fasting for 31 days. On the 31st day of experiment, blood was collected to measure corticosterone plasma levels and immune function (neutrophil/lymphocyte ratio, plasma bacterial killing ability - BKA, and hemagglutination) variables. Fasting did not affect corticosterone plasma levels but increased neutrophil/lymphocyte ratio and hemagglutination, while BKA was decreased. In this way, fasting modulates the innate immune function in male bullfrogs by increasing the NL ratio and hemagglutination activity while reducing BKA, without affecting plasma CORT levels or fat body mass content. Thus, 31 days of fasting induces blood immune cell redistribution and an immunomodulatory response without significant activation of the HPI axis or depletion of energy stores.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Travessa 14, 321, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil.
| | - Débora M A Prado
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Travessa 14, 321, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil
| | - Felipe R Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Travessa 14, 321, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil
| | - Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Travessa 14, 321, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Travessa 14, 321, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil
| | - José E de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, R. Artur Riedel 275, Jd. Eldorado, CEP 09972-270 Diadema, SP, Brazil
| |
Collapse
|
2
|
Titon Junior B, Barsotti AMG, Titon SCM, Vaz RI, de Figueiredo AC, Vasconcelos-Teixeira R, Navas CA, Gomes FR. Baseline and stress-induced steroid plasma levels and immune function vary annually and are associated with vocal activity in male toads (Rhinella icterica). Gen Comp Endocrinol 2024; 354:114517. [PMID: 38615755 DOI: 10.1016/j.ygcen.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.
Collapse
Affiliation(s)
- Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| | | | | | - Renata Ibelli Vaz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | | | - Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
3
|
Sandmeier FC. Quantification of Thermal Acclimation in Immune Functions in Ectothermic Animals. BIOLOGY 2024; 13:179. [PMID: 38534449 DOI: 10.3390/biology13030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
This short review focuses on current experimental designs to quantify immune acclimation in animals. Especially in the face of rapidly changing thermal regimes, thermal acclimation of immune function has the potential to impact host-pathogen relationships and the fitness of hosts. While much of the field of ecoimmunology has focused on vertebrates and insects, broad interest in how animals can acclimate to temperatures spans taxa. The literature shows a recent increase in thermal acclimation studies in the past six years. I categorized studies as focusing on (1) natural thermal variation in the environment (e.g., seasonal), (2) in vivo manipulation of animals in captive conditions, and (3) in vitro assays using biological samples taken from wild or captive animals. I detail the strengths and weaknesses of these approaches, with an emphasis on mechanisms of acclimation at different levels of organization (organismal and cellular). These two mechanisms are not mutually exclusive, and a greater combination of the three techniques listed above will increase our knowledge of the diversity of mechanisms used by animals to acclimate to changing thermal regimes. Finally, I suggest that functional assays of immune system cells (such as quantification of phagocytosis) are an accessible and non-taxa-specific way to tease apart the effects of animals upregulating quantities of immune effectors (cells) and changes in the function of immune effectors (cellular performance) due to structural changes in cells such as those of membranes and enzymes.
Collapse
|
4
|
Pereira KE, Bletz MC, McCartney JA, Woodhams DC, Woodley SK. Effects of exogenous elevation of corticosterone on immunity and the skin microbiome of eastern newts ( Notophthalmus viridescens). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220120. [PMID: 37305906 PMCID: PMC10258667 DOI: 10.1098/rstb.2022.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/15/2022] [Indexed: 06/13/2023] Open
Abstract
The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Kenzie E. Pereira
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Julia A. McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sarah K. Woodley
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
5
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Madelaire CB, Silva DP, Titon SCM, Lamadrid-Feris F, Floreste FR, Titon Jr B, Gomes FR. Contrasting effects of transdermal and implant corticosterone treatments in the American bullfrog wound healing. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220119. [PMID: 37305919 PMCID: PMC10258662 DOI: 10.1098/rstb.2022.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 06/13/2023] Open
Abstract
Glucocorticoid (GC) release is triggered by adverse stimuli that activate the hypothalamus-pituitary-adrenal/interrenal axis. Glucocorticoids may enhance or suppress immune functions depending on the level of elevation. In this study, we investigated the effects of transient and chronic increase of corticosterone (CORT) on the wound healing of the American bullfrog. Frogs were submitted to a daily transdermal hormonal application that acutely elevated CORT plasma levels, or vehicle as a control. Other frogs were surgically implanted with a silastic tube filled with CORT that resulted in chronic elevation of CORT plasma levels or received empty implants as a control. A dermal biopsy was performed to create a wound and was photographed every 3 days. Individuals treated with transdermal CORT started healing faster than their control 32 days after the biopsy. Frogs that received CORT implants tended to heal slower than control subjects. Plasma bacterial killing ability was not affected by treatment, which reinforces the constitutive nature of this innate immune trait. By the end of the experiment, frogs from the acute CORT treatment had smaller wounds compared with those receiving the CORT-filled implants, highlighting the differential effects of acute (immunoenhancing) and chronic (immunosuppressive) elevation of CORT plasma levels. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Carla B. Madelaire
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance Science, Escondido, CA 92027, USA
| | - Diego P. Silva
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | | | | | - Felipe R. Floreste
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Braz Titon Jr
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Fernando R. Gomes
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
7
|
Lima AS, de Figueredo AC, Floreste FR, Garcia Neto PG, Gomes FR, Titon SCM. Temperature Extreme Events Decrease Endocrine and Immune Reactive Scope in Bullfrogs (Lithobates catesbeianus). Integr Comp Biol 2022; 62:1671-1682. [PMID: 35771987 DOI: 10.1093/icb/icac105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Currently, effects of increased atmospheric temperature, in the context of ongoing climate change, have been investigated in multiple organisms and levels of biological organization. While there has been a focus on the impacts of increased mean temperature, an emergent and equally important point is the consequences of recurrent exposure to extreme temperature events, simulating heat waves. This study investigated the effects of serial exposure to high temperatures on immune and endocrine variables before and after exposure to an acute secondary stressor in bullfrogs (Lithobates catesbeianus). Adult males were divided into three groups and subjected to three thermal regimes: control (c; constant 22°C); experimental 1 (E1; kept at 22°C and exposed to 4 days of 30°C every 16 days); and experimental 2 (E2; kept at 22°C and exposed to 4 days of 30°C every 6 days). Blood samples were collected on the last day of key extreme heat events. Two weeks after the last extreme heat event, animals were subjected to restraint stress (1 h) and sampled again. Blood samples were used to determine neutrophil: lymphocyte ratio, plasma bacterial killing ability, as well as, corticosterone and plasma testosterone levels. Overall, we found exposure to extreme heat events did not affect immune and endocrine variables over time. Meanwhile, the previous exposure to extreme heat events modulated the responsiveness to restraint. The amplitude of increased corticosterone plasma levels and neutrophil: lymphocyte ratio in response to restraint decreased with the number of previous exposures to extreme heat events. These results suggest that exposure to extreme climatic events has hidden effects on bullfrog's stress response, expressed as diminished reactive scope to a novel stressor. This represents a highly deleterious facet of climate change since diminished responsiveness prevents proper coping with wildlife challenges.
Collapse
Affiliation(s)
- Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Aymam Cobo de Figueredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Patrício Getúlio Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
8
|
Assis VR, Titon SCM, Titon B, Gomes FR. The Impacts of Transdermal Application of Corticosterone on Toad (Rhinella icterica) Immunity. Integr Comp Biol 2022; 62:1640-1653. [PMID: 35902322 DOI: 10.1093/icb/icac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that acute physiological increases in endogenous glucocorticoid levels have immunostimulatory effects. Although post-acute stress immunosuppressive effects have also been described, the difference between enhancing and suppressing the immune response seems mediated by the stressor's duration, intensity, and the immune component under analysis. To elicit physiologically relevant corticosterone levels that can be found in Rhinella icterica toads after stressful events (e.g., restraint or captivity) and understand how acute increased glucocorticoid levels of different intensities affect corticosterone and testosterone plasma levels and immune parameters (in vitro plasma bacterial killing ability, neutrophil-to-lymphocyte ratio, and in vivo phagocytosis of peritoneal leukocytes), we submitted toads to the transdermal application of two corticosterone doses (1 and 10 μg). Corticosterone transdermal application increased corticosterone plasma levels with different intensities: 3 times for 1 μg and fourteen times for 10 μg, compared to the vehicle, and the neutrophil-to-lymphocyte ratio increased regardless of the corticosterone dose. However, there was no effect on testosterone levels and bacterial killing ability. Interestingly, both corticosterone doses promoted immunosuppression, decreasing peritoneal leukocytes' phagocytosis activity by 60% for toads receiving the dose of 1µg and 40% for those receiving 10 μg. Our results show the complexity of the relationship between increased corticosterone levels and immunomodulation. The different corticosterone doses promoted increases of distinct magnitudes in corticosterone plasma levels, with the less intense increase in corticosterone levels generating greater cell-mediated immunosuppression. Future studies using different corticosterone doses to achieve and compare physiological vs. pharmacological hormone levels are imperative to understanding these interrelationships between corticosterone and immune response.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
9
|
Gomes FR, Madelaire CB, Moretti EH, Titon SCM, Assis VR. Immunoendocrinology and Ecoimmunology in Brazilian Anurans. Integr Comp Biol 2022; 62:1654-1670. [PMID: 35411921 DOI: 10.1093/icb/icac014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This paper reviews several aspects of immunoendocrinology and ecoimmunology in Brazilian species of anurans under investigation for more than a decade, including (1) patterns of annual covariation of circulating steroids, calling behavior and innate immunity, (2) endocrine and immune correlates of calling performance, (3) behavioral and physiological correlates of parasite load, (4) thermal sensitivity of immune function, and (5) endocrine and immunomodulation by experimental exposure to acute and chronic stressors, as well as to endocrine manipulations and simulated infections. Integrated results have shown an immunoprotective role of increased steroid plasma levels during reproductive activity in calling males. Moreover, a higher helminth parasite load is associated with changes in several behavioral and physiological traits under field conditions. We also found anuran innate immunity is generally characterized by eurythermy, with maximal performance observed in temperatures close to normal and fever thermal preferendum. Moreover, the aerobic scope of innate immune response is decreased at fever thermal preferendum. Experimental exposure to stressors results in increased corticosterone plasma levels and immune redistribution, with an impact on immune function depending on the duration of the stress exposure. Interestingly, the fate of immunomodulation by chronic stressors also depends in part on individual body condition. Acute treatment with corticosterone generally enhances immune function, while prolonged exposure results in immunosuppression. Still, the results of hormonal treatment are complex and depend on the dose, duration of treatment, and the immune variable considered. Finally, simulated infection results in complex modulation of the expression of cytokines, increased immune function, activation of the Hypothalamus-Pituitary-Interrenal axis, and decreased activity of the Hypothalamus-Pituitary-Gonadal axis, as well as reduced melatonin plasma levels, suggesting that anurans have a functional Immune-Pineal axis, homologous to that previously described for mammals. These integrated and complementary approaches have contributed to a better understanding of physiological mechanisms and processes, as well as ecological and evolutionary implications of anuran immunoendocrinology.
Collapse
Affiliation(s)
- Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Carla Bonetti Madelaire
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil.,School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Eduardo Hermógenes Moretti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1730, São Paulo, SP 05508-900, Brasil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| |
Collapse
|
10
|
Slama SL, Williams GS, Painter MN, Sheedy MD, Sandmeier FC. Temperature and Season Influence Phagocytosis by B1 Lymphocytes in the Mojave Desert Tortoise. Integr Comp Biol 2022; 62:1683-1692. [PMID: 35536570 DOI: 10.1093/icb/icac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lymphocytes are usually interpreted as functioning in adaptive immunity despite evidence that large proportions of these cells (B1 lymphocytes) have innate immune functions, including phagocytosis, in the peripheral blood of ectothermic vertebrates. We used a recently optimized assay to assess environmental influences on phagocytic activity of lymphocytes isolated from the Mojave desert tortoise (Gopherus agassizii). Previous studies suggest that lymphocytes in this species are associated with reduced pathogen loads, especially in cooler climates, and that lymphocyte numbers fluctuate seasonally. Thus, we evaluated thermal dependence of phagocytic activity in vitro and across seasons. While B1 lymphocytes appeared to be cold-adapted and always increased phagocytosis at cool temperatures, we also found evidence of thermal acclimation. Tortoises upregulated these lymphocytes during cooler seasons in the fall as their preferred body temperatures dropped, and phagocytosis also increased in efficiency during this same time. Like many other ectothermic species, populations of desert tortoises are in decline, in part due to a cold-adapted pathogen that causes chronic respiratory disease. Future studies, similarly focused on the function of B1 lymphocytes, could serve to uncover new patterns in thermal acclimation of immune functions and disease ecology across taxa of ectothermic vertebrates.
Collapse
Affiliation(s)
- Summer L Slama
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Grace S Williams
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Mariah N Painter
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Maxwell D Sheedy
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Franziska C Sandmeier
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| |
Collapse
|
11
|
Assis VR, Titon SCM, Voyles J. Ecoimmunology: What Unconventional Organisms Tell Us after Two Decades. Integr Comp Biol 2022; 62:icac148. [PMID: 36250609 DOI: 10.1093/icb/icac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 02/18/2024] Open
Affiliation(s)
- Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
12
|
de Figueiredo AC, Titon SCM, Cyrino JC, Nogueira LAK, Gomes FR. Immune and hormonal modulation in the postprandial period of bullfrogs (Lithobates catesbeianus). J Exp Biol 2021; 224:272629. [PMID: 34704595 DOI: 10.1242/jeb.243153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Mammals show immune up-regulation and increased plasma and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, such as corticosterone and melatonin, after feeding. However, little is known about the endocrine and immune modulation in the postprandial period of ectothermic animals. This study investigated the effects of feeding on endocrine and immune responses in the bullfrog (Lithobates catesbeianus). Frogs were fasted for 10 days and divided into two groups: fasted and fed with fish feed (5% of body mass). Blood and gastrointestinal tract tissues (stomach and intestine) were collected at 6, 24, 48, 96 and 168 h to measure neutrophil/lymphocyte ratio, plasma bacterial killing ability, phagocytosis of blood leukocytes, plasma corticosterone and melatonin, and stomach and intestine melatonin. Feeding increased plasma corticosterone at 24 h and decreased it at 168 h, and increased neutrophil/lymphocyte ratio at 6, 24 and 96 h. We also observed decreased bacterial killing ability 48 h after feeding. Stomach melatonin increased after 17 days of fasting. We show that feeding activates the hypothalamic-pituitary-interrenal axis and promotes transient immunosuppression, without stimulating an inflammatory response. Increased corticosterone may mobilize energy to support digestive processes and melatonin may protect the stomach during fasting. We conclude that feeding modulates secretion of immunoregulatory hormones, initially increasing plasma corticosterone levels, followed by a decrease at the end of meal digestion, and causes systemic immune cell redistribution, increasing neutrophil/lymphocyte ratio for almost the entire period of meal digestion in bullfrogs. Also, fasting modulates secretion of melatonin in the stomach.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Stefanny C M Titon
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - João C Cyrino
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Letícia A K Nogueira
- Institute of Environmental, Chemical, and Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema- CEP 09972-270, Diadema, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|