1
|
Mikó Z, Bókony V, Ujhegyi N, Nemesházi E, Erös R, Orf S, Hettyey A. Weak effects of chlorpyrifos at environmentally relevant concentrations on fitness-related traits in agile frogs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107400. [PMID: 40349634 DOI: 10.1016/j.aquatox.2025.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
The widespread application of pesticides makes it important to understand the impacts of these chemicals on wildlife. Chlorpyrifos, an organophosphate insecticide that is still used en masse over large parts of the globe, can affect the development and behavior of non-target organisms and may thereby alter predator-prey interactions. To investigate whether environmentally relevant concentrations of chlorpyrifos affect survival, somatic, cerebral, and sexual development, as well as anti-predator behavior of the agile frog (Rana dalmatina), we exposed tadpoles to one of three treatments (0, 0.5, or 5 μg chlorpyrifos / L) either for three days (acute exposure) or throughout larval development (chronic exposure). We measured mortality, activity, and space use in the presence or absence of chemical cues of predatory fish, brain morphology, length of larval development, body mass at metamorphosis and two months later, and phenotypic sex. Compared to control individuals, tadpoles acutely exposed to 5 μg/L chlorpyrifos showed a shorter freezing response to predator cue on the first observation day. Also, chronic exposure to the same concentration decreased body mass at metamorphosis. Neither the chronically nor the acutely applied 0.5 μg/L chlorpyrifos concentration had any significant effect on the evaluated traits. Our results demonstrate that exposure to chlorpyrifos can induce changes in behavior and may result in lowered body mass of agile frog tadpoles, but only if the insecticide is present chronically at relatively high concentrations. Thus, agile frog tadpoles appear to be relatively tolerant to chlorpyrifos, but may suffer from its repeated high-dose application.
Collapse
Affiliation(s)
- Zsanett Mikó
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary; Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary.
| | - Veronika Bókony
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary
| | - Nikolett Ujhegyi
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary; Department of Wildlife Biology and Management, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100, Gödöllő, Hungary
| | - Edina Nemesházi
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary; Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Réka Erös
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary; Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Stephanie Orf
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Attila Hettyey
- Department of Evolutionary Ecology, HUN-REN Centre for Agricultural Research, Plant Protection Institute, Brunszvik u. 2, H- 2462, Martonvásár, Hungary
| |
Collapse
|
2
|
Gordillo L, Quiroga L, Ray M, Sanabria E. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). J Therm Biol 2024; 120:103816. [PMID: 38428105 DOI: 10.1016/j.jtherbio.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The intensive use of agrochemicals and the rapid increase of global temperatures have modified the thermal conditions of aquatic environments, thus increasing amphibians' vulnerability to global warming and positioning them at great risk. Commercial formulations of chlorpyrifos (COM) are the pesticides most widely used in agricultural activities, with a high toxic potential on amphibians. However, little is known about the separate effects of the active ingredient (CPF) and adjuvants (AD). We studied the thermal sensitivity at different concentrations and pesticide fractions in Rhinella arenarum tadpoles, on thermal tolerance limits (CTmax = Critical thermal maximum and CTmin = Critical thermal minimum), swimming speed (Ss), Optimum temperature (Top), and Thermal breadth 50 (B50). Our results demonstrate that the pesticide active ingredient, the adjuvants, and the commercial formulation of chlorpyrifos differentially impair the thermal sensitivity of R. arenarum tadpoles. The pesticide fractions affected the heat and the cold tolerance (CTmax and CTmin), depending on the concentrations they were exposed to. The locomotor performance (Ss, Top, and B50) of tadpoles also varied among fractions, treatments, and environmental temperatures. In the context of climate change, the outcomes presented are particularly relevant, as mean temperatures are increasing at unprecedented rates, which suggests that tadpoles inhabiting warming and polluted ponds are currently experiencing deleterious conditions. Considering that larval stages of amphibians are the most susceptible to changing environmental conditions and the alarming predictions about environmental temperatures in the future, it is likely that the synergism between high temperatures and pesticide exposure raise the threat of population deletions in the coming years.
Collapse
Affiliation(s)
- Luciana Gordillo
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Maribel Ray
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina.
| | - Eduardo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Jorge Contreras 1300. (M5502JMA), Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
3
|
Chandra Sekaran SP, Thotakura B, Jyothi AK, Manickam S, Chanemougavally J, Prabhu K, Gopalan DH. Effect of chlorpyrifos and its metabolites on skeletal system development of chick embryo. Birth Defects Res 2023; 115:1063-1078. [PMID: 37122261 DOI: 10.1002/bdr2.2170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 05/02/2023]
Abstract
RESEARCH FOCUS Chlorpyrifos is an organophosphate insecticide used primarily to control pests on a variety of food and feed crops. Humans are directly or indirectly exposed to this pesticide through food, air, and occupation. The ill effects of chlorpyrifos on various organ systems of human has been widely documented, but less is known about its influence on human bones. AIM To analyze the effect of chlorpyrifos and its metabolites 3,5,6-trichloro-2-pyridinol (TCPy) on the skeletal system of the chick embryo. MATERIALS AND METHODS Fertilized chick eggs were exposed to different concentrations of chlorpyrifos and its metabolite 3,5,6-TCPy on 1.5 days of incubation. The proximal phalanx of 18-day-old embryos was analyzed for defects in growth and ossification through histopathology, immunohistochemistry, angiogenesis assay, and gene expression study. RESULTS Dose-dependent variations in developing bone of chick embryo were observed. Histochemical and histomorphometry studies of proximal phalanx showed increased in the growth plate length (F(9, 59) = 228.9509, p = .00001) with a reduction in the total length of the phalanx (F(9, 59) = 109.9905, p = .00001), decreased mineralization (F(9, 59) = 224.6872, p = .00001), decreased blood islands in the bone marrow (F(9, 59) = 7.7083, p = .0001) of chlorpyrifos, and 3,5,6-TCPy-exposed group. Significant downregulations in the expression patterns of the transcription factors, such as SOX9, RUNX2, and ALP, were also observed. CONCLUSION Chlorpyrifos and its metabolite 3,5,6-TCPy exposure alters the chondrogenesis in the growth plate cartilage of long bone in chick embryo. The pesticide and its metabolite also interfere in ossification.
Collapse
Affiliation(s)
| | - Balaji Thotakura
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Ashok Kumar Jyothi
- Apollo Institute of Medical Sciences & Research, Chittoor, Andhrapradesh, India
| | - Subramanian Manickam
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Jayaprakash Chanemougavally
- Department of Anatomy, A.C.S Medical College and Hospital, Dr. MGR Educational and Research Institute Velappanchavadi, Chennai, Tamil Nadu, India
| | - Kaliaperumal Prabhu
- Department of Anatomy, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | | |
Collapse
|
4
|
Samare-Najaf M, Samareh A, Namavar Jahromi B, Jamali N, Vakili S, Mohsenizadeh M, Clark CCT, Abbasi A, Khajehyar N. Female infertility caused by organophosphates: an insight into the latest biochemical and histomorphological findings. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Ali Abbasi
- Department of Biochemistry and Biophysics, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| |
Collapse
|
5
|
Bókony V, Ujhegyi N, Mikó Z, Erös R, Hettyey A, Vili N, Gál Z, Hoffmann OI, Nemesházi E. Sex Reversal and Performance in Fitness-Related Traits During Early Life in Agile Frogs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.745752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.
Collapse
|
6
|
Echeverri-Jaramillo G, Jaramillo-Colorado B, Sabater-Marco C, Castillo-López MÁ. Cytotoxic and estrogenic activity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol. Study of marine yeasts as potential toxicity indicators. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:104-117. [PMID: 33249537 DOI: 10.1007/s10646-020-02315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CP) is one of the organophosphate insecticides most used worldwide today. Although the main target organ for CP is the nervous system triggering predominantly neurotoxic effects, it has suggested other mechanisms of action as cytotoxicity and endocrine disruption. The risk posed by the pesticide metabolites on non-target organisms is increasingly recognized by regulatory agencies and natural resource managers. In the present study, cytotoxicity and estrogenic activity of CP, and its principal metabolite 3,5,6-trichloro-2-pyridinol (TCP) have been evaluated by in vitro assays, using two mammalian cell lines (HEK293 and N2a), and a recombinant yeast. Results indicate that TCP is more toxic than CP for the two cell lines assayed, being N2a cells more sensitive to both compounds. Both compounds show a similar estrogenic activity being between 2500 and 3000 times less estrogenic than 17β-estradiol. In order to find new toxicity measurement models, yeasts isolated from marine sediments containing CP residues have been tested against CP and TCP by cell viability assay. Of the 12 yeast strains tested, 6 of them showed certain sensitivity, and a concentration-dependent response to the tested compounds, so they could be considered as future models for toxicity tests, although further investigations and proves are necessary.
Collapse
Affiliation(s)
- Gustavo Echeverri-Jaramillo
- Grupo de Investigación Microbiología y Ambiente, GIMA. Programa de Bacteriología, Universidad de San Buenaventura, Cartagena, Colombia
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia
| | - Beatriz Jaramillo-Colorado
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia.
| | - Consuelo Sabater-Marco
- Departamento de Biotecnología, Universidad Politécnica de Valencia, 46022, Valencia, España
| | | |
Collapse
|
7
|
Bernabò I, Guardia A, Macirella R, Sesti S, Tripepi S, Brunelli E. Tissues injury and pathological changes in Hyla intermedia juveniles after chronic larval exposure to tebuconazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111367. [PMID: 32971454 DOI: 10.1016/j.ecoenv.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TBZ), an azole pesticide, is one of the most frequently detected fungicides in surface water. Despite its harmful effects, mainly related to endocrine disturbance, the consequences of TBZ exposure in amphibians remain poorly understood. Here, we investigated the adverse and delayed effects of TBZ chronic exposure on a native anuran species, often inhabiting cultivated areas, the Italian tree frog (Hyla intermedia). To disclose the multiple mechanisms of action through which TBZ exerts its toxicity we exposed tadpoles over the whole larval period to two sublethal TBZ concentrations (5 and 50 μg/L), and we evaluated histological alterations in three target organs highly susceptible to xenobiotics: liver, kidney, and gonads. We also assessed morphometric and gravimetric parameters: snout-vent length (SVL), body mass (BM), liver somatic index (LSI), and gonad-mesonephros complex index (GMCI) and determined sex ratio, gonadal development, and differentiation. Our results show that TBZ induces irreversible effects on multiple target organs in H. intermedia, exerting its harmful effects through several pathological pathways, including a massive inflammatory response. Moreover, TBZ markedly affects sexual differentiation also by inducing the appearance of sexually undetermined individuals and a general delay of germ cell maturation. Given the paucity of data on the effects of TBZ in amphibians, our results will contribute to a better understanding of the environmental risk posed by this fungicide to the most endangered group of vertebrates.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
8
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
9
|
Raibeemol KP, Chitra KC. Induction of immunological, hormonal and histological alterations after sublethal exposure of chlorpyrifos in the freshwater fish, Pseudetroplus maculatus (Bloch, 1795). FISH & SHELLFISH IMMUNOLOGY 2020; 102:1-12. [PMID: 32278836 DOI: 10.1016/j.fsi.2020.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the induction of immunological, hormonal and histological changes in the freshwater fish, Pseudetroplus maculatus after sublethal exposure of chlorpyrifos. Fish were exposed to chlorpyrifos at one-tenth (0.661μg/L) and one-fifth (1.32 μg/L) of LC50 value, for 15 and 30 d, along with the respective control group. Innate and adaptive immune responses of the fish against the toxicant exposure were measured using lysozyme, complement (ACH50) levels, phagocytic, nitroblue tetrazolium (NBT), myeloperoxidase (MPO), anti-protease and hemagglutination activities, and IgM concentration. The results revealed that sublethal exposure of chlorpyrifos caused significant (p < 0.05) reduction in lysozyme, ACH50, phagocytic, and anti-protease activities whereas there was significant (p < 0.05) increase in NBT, MPO and hemagglutination levels along with serum IgM concentration. Chlorpyrifos treatment showed significant (p < 0.05) decline in the serum levels of cortisol, thyroid, testosterone and estradiol hormones in duration- and concentration-dependent manner. The major histological lesions noted in liver includes necrosis, vacuolization, hepatocytic and cytoplasmic degeneration, while kidneys showed vacoules, necrosis and rupture in renal tubules and glomerulus, whereas spleen were found with melanomacrophage aggregation and necrosis. Similarly, testis showed remarkable changes like reduction in the number of spermatozoa and disintegrated seminiferous tubules while ovarian lesions include degenerated and empty follicles, few atretic oocytes, reduced size of follicles, and broken theca granulosa. The current findings revealed that the use of chlorpyrifos in domestic and agricultural purposes even at sublethal concentration could affect the non-target organisms including fish, and thereby alter the health status of aquatic ecosystems.
Collapse
Affiliation(s)
- K P Raibeemol
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - K C Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
10
|
Hazarika J, Ganguly M, Borgohain G, Baruah I, Sarma S, Bhuyan P, Mahanta R. Endocrine disruption: molecular interactions of chlorpyrifos and its degradation products with estrogen receptor. Struct Chem 2020. [DOI: 10.1007/s11224-020-01562-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Spieker J, Frieß JL, Sperling L, Thangaraj G, Vogel-Höpker A, Layer PG. Cholinergic control of bone development and beyond. Int Immunopharmacol 2020; 83:106405. [PMID: 32208165 DOI: 10.1016/j.intimp.2020.106405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
There is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions. In Results, we briefly summarize our in vivo and in vitro studies on bone development of chick and mouse [1,2], including (i) expressions of cholinergic components (AChE, BChE, ChAT) in chick embryo, (ii) characterisation of defects during skeletogenesis in prenatal ChE knockout mice, (iii) loss-of-function experiments with beads soaked in cholinergic components and implanted into chicken limb buds, and finally (iv) we use an in vitro mesenchymal 3D-micromass model that mimics cartilage and bone formation, which also had revealed complex crosstalks between cholinergic, radiation and inflammatory mechanisms [3]. In Discussion, we evaluate non-cholinergic actions of cholinesterases during bone formation by considering: (i) how cholinesterases could function in adhesive mechanisms; (ii) whether and how cholinesterases can form bone-regulatory complexes with alkaline phosphatase (ALP) and/or ECM components, which could regulate cell division, migration and adhesion. We conclude that cholinergic actions in bone development are driven mainly by classic cholinergic, but non-neural cycles (e.g., by acetylcholine); in addition, both cholinesterases can exert distinct ACh-independent roles. Considering their tremendous medical impact, these results bring forward novel research directions that deserve to be pursued.
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Johannes L Frieß
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Laura Sperling
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Gopenath Thangaraj
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
12
|
Sharma RK, Singh P, Setia A, Sharma AK. Insecticides and ovarian functions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:369-392. [PMID: 31916619 DOI: 10.1002/em.22355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajnesh Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Singh
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aarzoo Setia
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aman Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
13
|
Pinelli C, Santillo A, Chieffi Baccari G, Falvo S, Di Fiore MM. Effects of chemical pollutants on reproductive and developmental processes in Italian amphibians. Mol Reprod Dev 2019; 86:1324-1332. [DOI: 10.1002/mrd.23165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Pinelli
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
14
|
Bernabò I, Guardia A, Macirella R, Tripepi S, Brunelli E. Chronic exposures to fungicide pyrimethanil: multi-organ effects on Italian tree frog (Hyla intermedia). Sci Rep 2017; 7:6869. [PMID: 28761072 PMCID: PMC5537256 DOI: 10.1038/s41598-017-07367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Amphibian habitats are easily contaminated by several pollutants, and in agricultural landscapes the likely exposure scenario is represented by pesticides. Many of these substances are known or suspected to act as endocrine disrupting chemicals (EDCs). The goal of the present study was to assess the effects of pyrimethanil, a common-used but also overlooked fungicide, on liver, kidney and gonadal differentiation of Hyla intermedia. Through a multi-organ evaluation, we demonstrated that a long term exposure to two environmentally relevant concentrations of pyrimethanil (5 and 50 µg/L) elicits a range of toxic responses. First we showed that pyrimethanil induces underdevelopment of ovaries and interferes with normal sexual differentiation, thus revealing the endocrine disruption potential of this fungicide. Moreover we revealed that all considered organs are seriously affected by this fungicide and both necrosis and apoptosis contribute to the histological response. This is the first report on the effects of pyrimethanil on gonads, liver and kidney histology of a non-model species and it demonstrates that the hazardous properties of this fungicide can result from several pathological processes affecting different key compartments of amphibian.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
15
|
De Donato C, Barca D, Milazzo C, Santoro R, Giglio G, Tripepi S, Sperone E. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy). Parasitol Res 2017; 116:1745-1753. [PMID: 28466247 DOI: 10.1007/s00436-017-5453-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 11/28/2022]
Abstract
Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.
Collapse
Affiliation(s)
- Carlo De Donato
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Donatella Barca
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Concetta Milazzo
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Raffaella Santoro
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Gianni Giglio
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Sandro Tripepi
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy
| | - Emilio Sperone
- DiBEST, Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci Cubo 4B, Rende (CS), Italy.
| |
Collapse
|
16
|
Srivastav AK, Srivastava S, Srivastav SK, Suzuki N. Acute Toxicity of an Organophosphate Insecticide Chlorpyrifos to an Anuran, Rana cyanophlyctis. IRANIAN JOURNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.2.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Ventura C, Nieto MRR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C, Núñez M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 2016; 156:1-9. [PMID: 26518068 DOI: 10.1016/j.jsbmb.2015.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
Endocrine disruptors (EDs) are compounds that interfere with hormone regulation and influence mammary carcinogenesis. We have previously demonstrated that the pesticide chlorpyrifos (CPF) acts as an ED in vitro, since it induces human breast cancer cells proliferation through estrogen receptor alpha (ERα) pathway. In this work, we studied the effects of CPF at environmental doses (0.01 and 1mg/kg/day) on mammary gland, steroid hormone receptors expression and serum steroid hormone levels. It was carried out using female Sprague-Dawley 40-days-old rats exposed to the pesticide during 100 days. We observed a proliferating ductal network with a higher number of ducts and alveolar structures. We also found an increased number of benign breast diseases, such as hyperplasia and adenosis. CPF enhanced progesterone receptor (PgR) along with the proliferating cell nuclear antigen (PCNA) in epithelial ductal cells. On the other hand, the pesticide reduced the expression of co-repressors of estrogen receptor activity REA and SMRT and it decreased serum estradiol (E2), progesterone (Pg) and luteinizing hormone (LH) levels. Finally, we found a persistent decrease in LH levels among ovariectomized rats exposed to CPF. Therefore, CPF alters the endocrine balance acting as an ED in vivo. These findings warn about the harmful effects that CPF exerts on mammary gland, suggesting that this compound may act as a risk factor for breast cancer.
Collapse
Affiliation(s)
- Clara Ventura
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Rosa Ramos Nieto
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Nadia Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Horacio Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, CONICET, Argentina
| | - Andrea Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Claudia Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Mariel Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
18
|
Mali PV, Gramapurohit NP. Pattern of gonadal differentiation and development up to sexual maturity in the frogs, Microhyla ornata and Hylarana malabarica: A comparative study. ACTA ACUST UNITED AC 2015; 323:666-78. [PMID: 26361250 DOI: 10.1002/jez.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/15/2015] [Accepted: 07/13/2015] [Indexed: 11/08/2022]
Abstract
Gonadogenesis was studied in Microhyla ornata (Family: Microhylidae) and Hylarana malabarica (Family: Ranidae) up to sexual maturity. Indifferent gonads of M. ornata directly differentiated into either testes or ovaries while those of H. malabarica differentiated into ovaries in all the individuals followed by testicular differentiation in males through an ovarian phase. In some tadpoles of M. ornata, formation of a central cavity at Gosner stage 27 marked ovary differentiation while meiosis was initiated at stage 29. Folliculogenesis was evident at stage 39. Vitellogenesis was initiated in females 9 months post-metamorphosis that attained maturity around 11 months after the completion of metamorphosis. Gonads of males with uniformly distributed germ and somatic cells remained undifferentiated until stage 41. Germ and somatic cells reorganized into seminiferous cords at stage 42. One month after completing metamorphosis, testes contained seminiferous tubules while those of 3 months old males exhibited all spermatogenic stages. In H. malabarica, germ cells entry into meiosis marked ovary differentiation at stage 29 while, ovarian cavity was discernable around stage 35. Post-metamorphosis, ovaries of 1-6 month old females contained pre-diplotene oocytes. Females were immature even 1 year after the completion of metamorphosis. In all the tadpoles, ovaries with central cavity and meiocytes were present up to the completion of metamorphosis. Gonads of prospective males displayed an obliterating ovarian cavity along with degenerating oocytes at the end of metamorphosis. Germ and somatic cells reorganized into seminiferous cords in males 3 months after the completion of metamorphosis. Testes of 4 months old males exhibited distinct seminiferous tubules while those of 6 months old exhibited meiosis. All spermatogenic stages were observed in testes of 9 months old males indicating maturity.
Collapse
Affiliation(s)
- Prajakta Vijay Mali
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | |
Collapse
|
19
|
Orton F, Tyler CR. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rev Camb Philos Soc 2014; 90:1100-17. [DOI: 10.1111/brv.12147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Frances Orton
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| | - Charles R. Tyler
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| |
Collapse
|
20
|
Giddings JM, Williams WM, Solomon KR, Giesy JP. Risks to aquatic organisms from use of chlorpyrifos in the United States. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 231:119-162. [PMID: 24723135 DOI: 10.1007/978-3-319-03865-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The risk of chlorpyrifos (CPY) to aquatic organisms in surface water of North America was assessed using measured concentrations in surface waters and modeling of exposures to provide daily concentrations that better characterize peak exposures.Ecological effects were compared with results of standard laboratory toxicity tests with single species as well as microcosm and mesocosm studies comprised of complex aquatic communities. The upper 90th centile 96-h concentrations(annual maxima) of chlorpyrifos in small streams in agricultural watersheds in Michigan and Georgia were estimated to be :-:;0.02 llg L-1; in a reasonable worstcase California watershed, the 90th centile 96-h annual maximum concentrations ranged from 1.32 to 1.54 llg L - 1• Measured concentrations of chlorpyrifos are less than estimates from simulation models. The 95th centile for more than I 0,000 records compiled by the US Geological Survey was 0.008 llg L -1• Acute toxicity endpoints for 23 species of crustaceans ranged from 0.035 to 457 llg L -I; for 18 species of aquatic insects, from 0.05 to 27 llg L -I; and for 25 species of fish, from 0.53to >806 llg L -I. The No Observed Adverse Effect Concentration (NOAECeco) in more than a dozen microcosm and mesocosm studies conducted in a variety of climatic zones, was consistently 0.1 llg L -1• These results indicated that concentrations of CPY in surface waters are rarely great enough to cause acute toxicity to even the most sensitive aquatic species. This conclusion is consistent with the lack of fish kills reported for CPY's normal use in agriculture in the U.S.Analysis of measured exposures showed that concentrations in surface waters declined after labeled use-patterns changed in 2001, and resulted in decreased risks for crustaceans, aquatic stages of insects, and fish. Probabilistic analysis of 96-h time-weighted mean concentrations, predicted by use of model simulation for three focus-scenarios selected for regions of more intense use of CPY and vulnerability to runoff, showed that risks from individual and repeated exposures to CPY in the Georgia and Michigan watersheds were de minimis. Risks from individual exposures in the intense-use scenario from California were de minimis for fish and insects and low for crustaceans. Risks from repeated exposures in the Californiain tense-use scenario were judged not to be ecologically relevant for insects and fish,but there were some risks to crustaceans. Limited data show that chlorpyrifos oxon(CPYO), the active metabolite of CPY is of similar toxicity to the parent compound.Concentrations of CPYO in surface waters are smaller than those of CPY and less frequently detected. Risks for CPYO in aquatic organisms were judged to be deminimis.Several uncertainties common to all AChE inhibitors were identified. Insufficient data were available to allow interpretation of the relevance of effects of CPY (and other pesticides that also target AChE) on behavior to assessment endpoints such as survival, growth, development, and reproduction. Data on the recovery of AChE from inhibition by CPY in fish are limited. Such data are relevant to the characterization of risks from repeated exposures, and represent an uncertainty in the assessment of risks for CPY and other pesticides that share the same target and toxico dynamics. More intensive monitoring of areas of greater use and more comprehensive models of cumulative effects that include rates of accumulation, metabolism and recovery of AChE in the more sensitive species would be useful in reducing this uncertainty.
Collapse
Affiliation(s)
- Jeffrey M Giddings
- Compliance Services International, 61 Cross Road, Rochester, MA, 02770, USA,
| | | | | | | |
Collapse
|
21
|
Lavorato M, Bernabò I, Crescente A, Denoël M, Tripepi S, Brunelli E. Endosulfan effects on Rana dalmatina tadpoles: quantitative developmental and behavioural analysis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:253-262. [PMID: 23064781 DOI: 10.1007/s00244-012-9819-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Endosulfan is an organochlorine pesticide that was recently labeled as a persistent organic pollutant, but it is still widely employed, particularly in developing countries. The goal of this study is to evaluate the acute (LC(50)) and chronic effects (developmental and behavioural traits) of this insecticide on Rana dalmatina tadpoles after exposure to ecologically relevant concentrations (0.005, 0.01, and 0.05 mg/L) by applying video-tracking techniques to evaluate the quantitative effect of endosulfan on amphibian behavioural patterns. The 96 h LC(50) value was 0.074 mg endosulfan/L. Tadpoles chronically exposed to 0.01 and 0.05 mg endosulfan/L underwent high mortality rate, decreased larval growth, delayed development, and increased incidence of malformations, and they did not reach metamorphosis by the end of the experiment. Moreover, tadpoles exposed to these concentrations exhibited several abnormalities in swimming patterns, such as shorter distance moved, swirling, resting, and unusual use of space. The exposure to 0.005 mg endosulfan/L did not cause any significant effects on behaviour, larval growth, or development, but we observed a significant decrease in both survival and time to metamorphosis. We showed that developmental abnormalities are dose-dependent and that the pesticide effects could differ depending on the endosulfan concentration and the species tested. We also validated the hypothesis that behavioural analysis, along with the use of new analytical methods, could be a useful tool in amphibian ecotoxicological studies.
Collapse
Affiliation(s)
- Manuela Lavorato
- Department of Ecology, University of Calabria, Via P. Bucci, Rende, Cosenza, Italy
| | | | | | | | | | | |
Collapse
|