1
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
2
|
Tresguerres M, Barott KL, Barron ME, Roa JN. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals. ACTA ACUST UNITED AC 2014; 217:663-72. [PMID: 24574382 DOI: 10.1242/jeb.086157] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
3
|
Franzellitti S, Buratti S, Capolupo M, Du B, Haddad SP, Chambliss CK, Brooks BW, Fabbri E. An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:14-26. [PMID: 24361074 DOI: 10.1016/j.aquatox.2013.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 05/27/2023]
Abstract
The present study investigated possible adverse outcome pathways (AOPs) of the antidepressant fluoxetine (FX) in the marine mussel Mytilus galloprovincialis. An evaluation of molecular endpoints involved in modes of action (MOAs) of FX and biomarkers for sub-lethal toxicity were explored in mussels after a 7-day administration of nominal FX concentrations encompassing a range of environmentally relevant values (0.03-300ng/L). FX bioaccumulated in mussel tissues after treatment with 30 and 300ng/L FX, resulting in bioconcentration factor (BCF) values ranging from 200 to 800, which were higher than expected based solely on hydrophobic partitioning models. Because FX acts as a selective serotonin (5-HT) re-uptake inhibitor increasing serotonergic neurotransmission at mammalian synapses, cell signaling alterations triggered by 5-HT receptor occupations were assessed. cAMP levels and PKA activities were decreased in digestive gland and mantle/gonads of FX-treated mussels, consistent with an increased occupation of 5-HT1 receptors negatively coupled to the cAMP/PKA pathway. mRNA levels of a ABCB gene encoding the P-glycoprotein were also significantly down-regulated. This membrane transporter acts in detoxification towards xenobiotics and in altering pharmacokinetics of antidepressants; moreover, it is under a cAMP/PKA transcriptional regulation in mussels. Potential stress effects of FX were investigated using a battery of biomarkers for mussel health status that included lysosomal parameters, antioxidant enzyme activities, lipid peroxidation, and acetylcholinesterase activity. FX reduced the health status of mussels and induced lysosomal alterations, as suggested by reduction of lysosomal membrane stability in haemocytes and by lysosomal accumulation of neutral lipids in digestive gland. No clear antioxidant responses to FX were detected in digestive gland, while gills displayed significant increases of catalase and glutathione-s-transferase activities and a significant decrease of acetylcholinesterase activity. Though AOPs associated with mammalian therapeutic MOAs remain important during assessments of pharmaceutical hazards in the environment, this study highlights the importance of considering additional MOAs and AOPs for FX, particularly in marine mussels.
Collapse
Affiliation(s)
- Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy.
| | - Sara Buratti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| | - Marco Capolupo
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| | - Bowen Du
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Elena Fabbri
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy
| |
Collapse
|
4
|
Fabbri E, Capuzzo A. Cyclic AMP signaling in bivalve molluscs: an overview. ACTA ACUST UNITED AC 2010; 313:179-200. [PMID: 20127660 DOI: 10.1002/jez.592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cyclic AMP (cAMP)-dependent signaling accounts for the control of cellular cascades involved in many physiological functions, and a wealth of information is available on the cAMP system that operates in mammalian cells. Nevertheless, cAMP has a central role also in nonmammalian vertebrates and invertebrates. The present review aims at examining the information available on bivalve molluscs, from the first studies carried out in the early 1980s to the last progresses made in the present days. The major focus is on the structural and operational characteristics of the main actors of the signaling pathway, i.e., adenylyl cyclase, G proteins, and protein kinase A, and on the role played by the cyclic nucleotide on smooth muscle, heart, gills, gonads, and metabolism regulation. Moreover, recent evidence regarding the cAMP system as a target of environmental stress factors are discussed. It will become clear that cAMP does play a wide and important role in bivalve physiology. Several issues have been sufficiently clarified, although investigated only in a few model species. However, further fundamental aspects remain unknown, mainly regarding molecular features and interactions with other signaling pathways, thus requiring further elucidation.
Collapse
Affiliation(s)
- Elena Fabbri
- Interdepartment Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Ravenna, Italy.
| | | |
Collapse
|
5
|
Itziou A, Dimitriadis VK. The potential role of cAMP as a pollution biomarker of terrestrial environments using the land snail Eobania vermiculata: correlation with lysosomal membrane stability. CHEMOSPHERE 2009; 76:1315-1322. [PMID: 19631962 DOI: 10.1016/j.chemosphere.2009.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
The present study investigates the role of the signal transduction molecule cAMP, and the lysosomal membrane stability (LMS), as biomarkers of terrestrial environmental pollution using the land snail Eobania vermiculata. Snails were exposed to different concentrations of heavy metals (Cd, Pb and Cu) and organic pollutants (chlorpyrifos, parathion-methyl and PAHs) in laboratory conditions for 25 days. In addition, snails were collected from various sites located at different distances away from two polluted areas in northern Greece (the road Agiou Dimitriou in Thessaloniki city and a lignite power station in the district of Kozani). The results of the current investigation showed significantly increased levels of cAMP in the digestive gland of snails, as well as decreased LMS values in all experimental groups compared to control animals. In support of our data, cAMP levels were significantly negatively correlated with the conventional biomarker LMS, thus encouraging the use of cAMP as a new potential stress index in terrestrial pollution biomonitoring studies.
Collapse
Affiliation(s)
- A Itziou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
6
|
Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:281-300. [PMID: 17560835 DOI: 10.1016/j.cbpc.2007.04.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/30/2007] [Accepted: 04/07/2007] [Indexed: 11/30/2022]
Abstract
The paper outlines a 2-tier approach for wide-scale biomonitoring programmes. To obtain a high level of standardization, we suggest the use of caged organisms (mussels or fish). An "early warning", highly sensitive, low-cost biomarker is employed in tier 1 (i.e. lysosomal membrane stability (LMS) and survival rate, a marker for highly polluted sites). Tier 2 is used only for animals sampled at sites in which LMS changes are evident and there is no mortality, with a complete battery of biomarkers assessing the levels of pollutant-induced stress syndrome. Possible approaches for integrating biomarker data in a synthetic index are discussed, along with our proposal to use a recently developed Expert System. The latter system allows a correct selection of biomarkers at different levels of biological organisation (molecular/cellular/tissue/organism) taking into account trends in pollutant-induced biomarker changes (increasing, decreasing, bell-shape). A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.
Collapse
Affiliation(s)
- A Viarengo
- Department of Environmental and Life Sciences (DiSAV), University of Piemonte Orientale, Via Bellini 25/G 15100 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
7
|
Fabbri E, Capuzzo A. Adenylyl cyclase activity and its modulation in the gills of Mytilus galloprovincialis exposed to Cr6+ and Cu2+. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 76:59-68. [PMID: 16242791 DOI: 10.1016/j.aquatox.2005.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/23/2005] [Accepted: 09/25/2005] [Indexed: 05/05/2023]
Abstract
The adenylyl cyclase (AC)/cAMP system regulates a large number of physiological functions in bivalve mussels, although its basal properties and the potential effects of environmental pollutants are scarcely studied. We characterized some properties of AC and measured both the enzyme activity and the cAMP levels in the gills of the filter-feeding sea mussel Mytilus galloprovincialis. Basal AC activity was 5.6+/-0.8 pmol cAMP 10 min(-1) mg protein(-1) and showed a Km value of 0.82+/-0.06 mM for ATP in the presence of 5mM Mg2+. It was stimulated up to 2.5- and 3.5-fold by 5-HT and GTPgammaS, respectively. Similarly to what was found in other bivalves, forskolin is a poor activator that reached significant stimulation only at 100 microM. Both basal and 5-HT-stimulated AC activity were significantly increased in the gills of mussels exposed for 7 days in aquaria to Cr6+ (10 ng/l) and Cu2+ (5 microg/l). The cAMP content of the gill under these conditions was also significantly higher than in control animals. In vitro exposure of gill membrane preparations to Cr6+ and Cu2+ induced a bimodal effect. Cu2+ significantly stimulated AC activity at nanomolar concentrations, but a strong inhibition was displayed in the micromolar range. A similar bell-shaped curve was obtained in the presence of Cr6+, with maximal AC stimulation at 10(-8)M and inhibition at 10(-5)M. Overall, these data suggest that the mussel AC/cAMP system can be affected with different patterns by heavy metals. AC activity is strongly affected by acute exposure to heavy metals in vitro, probably through a direct interaction of the pollutants with the enzyme molecule, while AC activity and cAMP content increase in organisms exposed for 7 days in vivo, probably as a defense response to acclimate the physiological functions to the environmental challenge.
Collapse
Affiliation(s)
- Elena Fabbri
- University of Bologna, Interdepartment Centre for Research in Environmental Sciences (CIRSA), Via S. Alberto 163, 48100 Ravenna, Italy
| | | |
Collapse
|