1
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
2
|
Vrech DE, Peretti AV, Prendini L, Mattoni CI. Bundles of Sperm: Structural Diversity in Scorpion Sperm Packages Illuminates Evolution of Insemination in an Ancient Lineage. AMERICAN MUSEUM NOVITATES 2022. [DOI: 10.1206/3993.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo V. Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lorenzo Prendini
- Arachnology Lab and Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Camilo I. Mattoni
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Soldatenko EV, Shatrov AB, Petrov AA. Sperm packaging in the seminal vesicles of Hygrophila (Gastropoda: Pulmonata). ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0408-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
7
|
Yamada S, Matzke-Karasz R, Heß M. How is a giant sperm ejaculator formed? Development of the Zenker organ after the last moult in Pseudocandona marchica (Crustacea, Ostracoda, Candonidae). ZOOL ANZ 2014. [DOI: 10.1016/j.jcz.2014.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ramm SA, Schärer L. The evolutionary ecology of testicular function: size isn't everything. Biol Rev Camb Philos Soc 2014; 89:874-88. [DOI: 10.1111/brv.12084] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/23/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Steven A. Ramm
- Evolutionary Biology; Bielefeld University; Morgenbreede 45 33615 Bielefeld Germany
| | - Lukas Schärer
- Evolutionary Biology; Zoological Institute, University of Basel; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
9
|
Adolphsen K, Amell A, Havko N, Kevorkian S, Mears K, Neher H, Schwarz D, Schulze SR. Type-I prenyl protease function is required in the male germline of Drosophila melanogaster. G3 (BETHESDA, MD.) 2012; 2:629-42. [PMID: 22690372 PMCID: PMC3362292 DOI: 10.1534/g3.112.002188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/20/2012] [Indexed: 12/23/2022]
Abstract
Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation.
Collapse
Affiliation(s)
- Katie Adolphsen
- Biology Department, Western Washington University, Bellingham, Washington 98225
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gomendio M, Tourmente M, Roldan ERS. Why mammalian lineages respond differently to sexual selection: metabolic rate constrains the evolution of sperm size. Proc Biol Sci 2011; 278:3135-41. [PMID: 21389027 DOI: 10.1098/rspb.2011.0275] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hypothesis that sperm competition should favour increases in sperm size, because it results in faster swimming speeds, has received support from studies on many taxa, but remains contentious for mammals. We suggest that this may be because mammalian lineages respond differently to sexual selection, owing to major differences in body size, which are associated with differences in mass-specific metabolic rate. Recent evidence suggests that cellular metabolic rate also scales with body size, so that small mammals have cells that process energy and resources from the environment at a faster rate. We develop the 'metabolic rate constraint hypothesis' which proposes that low mass-specific metabolic rate among large mammals may limit their ability to respond to sexual selection by increasing sperm size, while this constraint does not exist among small mammals. Here we show that among rodents, which have high mass-specific metabolic rates, sperm size increases under sperm competition, reaching the longest sperm sizes found in eutherian mammals. By contrast, mammalian lineages with large body sizes have small sperm, and while metabolic rate (corrected for body size) influences sperm size, sperm competition levels do not. When all eutherian mammals are analysed jointly, our results suggest that as mass-specific metabolic rate increases, so does maximum sperm size. In addition, species with low mass-specific metabolic rates produce uniformly small sperm, while species with high mass-specific metabolic rates produce a wide range of sperm sizes. These findings support the hypothesis that mass-specific metabolic rates determine the budget available for sperm production: at high levels, sperm size increases in response to sexual selection, while low levels constrain the ability to respond to sexual selection by increasing sperm size. Thus, adaptive and costly traits, such as sperm size, may only evolve under sexual selection when metabolic rate does not constrain cellular budgets.
Collapse
Affiliation(s)
- Montserrat Gomendio
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), José Gutierrez Abascal 2, 28006 Madrid, Spain.
| | | | | |
Collapse
|
11
|
Joly D, Schiffer M. Coevolution of male and female reproductive structures in Drosophila. Genetica 2010; 138:105-18. [PMID: 19657593 DOI: 10.1007/s10709-009-9392-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
The morphology of male genitalia whilst stable within species, exhibits huge interspecific variation. This variation is likely to be as a result of sexual selection due to the direct involvement of these reproductive structures in mating and sperm transfer. In contrast, internal soft tissue components of the genitalia are generally poorly investigated as they are not directly involved in physical and mechanical adequacy during sperm transfer. However, these soft tissue structures may also drive differential male-female interactions, particularly in internally fertilising organisms where females have the ability to store sperm and bias male reproductive success. In this paper we use the drosophila model to investigate the role of male and female reproductive elements in sexual selection. Our meta-analysis supplemented with additional new data clearly shows that within species, sperm length versus testis length, and sperm length versus seminal receptacle length, are highly correlated. Thus, independent of the phylogenetic relationship among species, gamete evolution is likely to result in sexual selection interactions that drive the evolution of internal reproductive components in both sexes. Our results and discussion of the literature highlight the importance of considering internal soft structures that may influence fertilisation, when investigating selective forces acting on the evolution of reproductive traits.
Collapse
Affiliation(s)
- Dominique Joly
- Laboratoire Evolution, Génomes et Spéciation, CNRS, UPR 9034, 91 198 Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|
12
|
Ramm SA, Stockley P. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol Lett 2009; 6:219-21. [PMID: 19828495 DOI: 10.1098/rsbl.2009.0635] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sperm competition typically favours an increased investment in testes, because larger testes can produce more sperm to provide a numerical advantage in competition with rival ejaculates. However, interspecific variation in testis size cannot be equated directly with variation in sperm production rate--which is the trait ultimately selected under sperm competition--because there are also differences between species in the proportion of spermatogenic tissue contained within the testis and in the time it takes to produce each sperm. Focusing on the latter source of variation, we provide phylogenetically controlled evidence for mammals that species with relatively large testes (and hence a high level of sperm competition) have a shorter duration of the cycle of the seminiferous epithelium and consequently a faster rate of spermatogenesis, enabling males to produce more sperm per unit testis per unit time. Moreover, we identify an independent negative relationship between sperm length and the rate of spermatogenesis, such that spermatogenesis takes longer in species with longer sperm. We conclude that sperm competition selects for both larger testes and a faster rate of spermatogenesis to increase overall sperm production, and that an evolutionary trade-off between sperm size and numbers may be mediated via constraints on the rate of spermatogenesis imposed by selection for longer sperm.
Collapse
Affiliation(s)
- Steven A Ramm
- Mammalian Behaviour and Evolution Group, Department of Veterinary Preclinical Science, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK.
| | | |
Collapse
|
13
|
Schärer L, Da Lage JL, Joly D. Evolution of testicular architecture in the Drosophilidae: a role for sperm length. BMC Evol Biol 2008; 8:143. [PMID: 18477397 PMCID: PMC2396631 DOI: 10.1186/1471-2148-8-143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary biologists have so far largely treated the testis as a black box with a certain size, a matching resource demand and a resulting sperm output. A better understanding of the way that the testis responds to selection may come from recent developments in theoretical biology aimed at understanding the factors that influence the evolution of tissue architecture (i.e. the logical organisation of a tissue). Here we perform a comparative analysis of aspects of testicular architecture of the fruit fly family Drosophilidae. Specifically, we collect published information on the number of first (or primary) spermatocytes in spermatogenesis, which allows to infer an important aspect of testicular architecture. RESULTS We show that testicular architecture is much more variable (both within and between species) than is generally appreciated. Moreover, the number of first spermatocytes is strongly correlated to the sperm length, which is inversely related to the sperm production, and thus the workload of the testis. CONCLUSION Our study clearly documents that tissue architecture can evolve, and that in the Drosophilidae it may do so in response to sexual selection. We conclude that the testis of the Drosophilidae is a promising model organ to test recent models of tissue architecture.
Collapse
Affiliation(s)
- Lukas Schärer
- Division of Ultrastructural Research and Evolutionary Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|