1
|
Webb JF. Structural and functional evolution of the mechanosensory lateral line system of fishesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3526-3542. [PMID: 38171014 PMCID: PMC10908562 DOI: 10.1121/10.0022565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
The mechanosensory lateral line system is the flow sensing system present in all 34 000+ species of fishes. Its neuromast receptor organs, located on the skin or in bony canals on the head and tubed scales on the trunk, respond to the near field component of acoustic stimuli as well as short range, low frequency (0-200 Hz) water flows of biotic and abiotic origin. Here, I discuss the genesis of my research career and its focus on the structural and functional evolution of the lateral line system among a wide taxonomic range of fishes including those from different aquatic habitats (tropical lakes to coral reefs and the deep sea). I discuss the importance of investigating structure before function, using investigations in my laboratory that had unexpected outcomes, as well as the role of serendipity in the evolution of a career and in the nature of scientific discovery.
Collapse
Affiliation(s)
- Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
2
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
3
|
Comprehensive Toxicity Assessment of PEGylated Magnetic Nanoparticles for in vivo applications. Colloids Surf B Biointerfaces 2019; 177:253-259. [PMID: 30763790 DOI: 10.1016/j.colsurfb.2019.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/21/2023]
Abstract
Magnetic nanoparticles (MNPs) represent one of the greatest promises for the development of a new generation of diagnostic agents for magnetic resonance imaging, with improved specificity and safety. Indeed, during the last decade the number of studies published in this field has grown exponentially. However, the clinical translation achieved so far has been very limited. This situation is likely related to the fact that most studies are focused on the in vitro characterization of these new nanomaterials, and very few provide an exhaustive in vivo characterization, where key aspects, such as pharmacokinetics, bioavailability, and, most importantly, toxicity, are properly evaluated. In this work, we propose a protocol for the comprehensive assessment of the toxicity of MNPs, based on the use of zebrafish embryos as an intermediate screening step between cell culture assays and studies in rodents. MNPs with different cores, ferrite and manganese ferrite oxide, and sizes between 3 and 20 nm, were evaluated. Cell viability at a concentration of 50 μg/mL of PEGylated MNPs was above 90 % in all cases. However, the exposure of zebrafish embryos to manganese based MNPs at concentrations above 100 μg/mL showed a low survival rate (<50 %). In contrast, no mortality (survival rate ∼100 %) and normal hatching rate were obtained for the iron oxide MNPs. Based on these results, together with the physicochemical and magnetic properties (r2 = 153.6 mM-1·s-1), the PEGylated 20 nm cubic shape iron oxide MNPs were selected and tested in mice, showing very good MRI contrast and, as expected, absence of toxicity.
Collapse
|
4
|
Liao ML, Peng WH, Kan D, Chien CL. Distribution patterns of the zebrafish neuronal intermediate filaments inaa and inab. J Neurosci Res 2018; 97:202-214. [PMID: 30387501 DOI: 10.1002/jnr.24347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 01/27/2023]
Abstract
It has been reported that the neuronal intermediate filament (IF) α-internexin may plays a role in the formation of the neuronal cytoskeleton during mammalian development. From a phylogenetic viewpoint, zebrafish express inaa and inab as homologs of mammalian α-internexin. However, the distribution patterns of the inaa and inab proteins throughout zebrafish development have not been well-characterized. We generated antibodies specific for zebrafish inaa and inab and analyzed the distribution of these two proteins in developing zebrafish. Inaa was identified in the major subdivisions of embryonic and larval brains as early as 1 day postfertilization (dpf), including the telencephalon, optic tectum, and cerebellum, and inab was also detected in the same regions from 3 dpf to the adult stage. Moreover, we demonstrated for the first time that inaa was distinctively expressed in the photoreceptor-like cells of the pineal gland, where inab was sparsely detected. Besides, the expression of inaa in male adult fish was found to be stable under different photoperiod conditions. Thus, we suggest that inaa is one of useful markers for studies of zebrafish cone photoreceptors not only in the retina but also in the pineal gland. In conclusion, we report that the distribution patterns of inaa and inab are phylogenetically conserved in the telencephalon, optic tectum, and cerebellum. Moreover, inaa and inab had different expression patterns in the pineal gland and retina during zebrafish development. Both inaa and inab are neuronal IFs and their functional roles may be different in various aspects of zebrafish neuronal development.
Collapse
Affiliation(s)
- Meng-Lin Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hau Peng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Medicine for International Student, College of Medicine, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
| | - Daphne Kan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
6
|
Li IJ, Chang CJ, Liu SC, Abe G, Ota KG. Postembryonic staging of wild-type goldfish, with brief reference to skeletal systems. Dev Dyn 2015; 244:1485-518. [PMID: 26316229 PMCID: PMC5054871 DOI: 10.1002/dvdy.24340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/10/2015] [Accepted: 08/23/2015] [Indexed: 01/06/2023] Open
Abstract
Background: Artificial selection of postembryonic features is known to have established morphological variation in goldfish (Carassius auratus). Although previous studies have suggested that goldfish and zebrafish are almost directly comparable at the embryonic level, little is known at the postembryonic level. Results: Here, we categorized the postembryonic developmental process in the wild‐type goldfish into 11 different stages. We also report certain differences between the postembryonic developmental processes of goldfish and zebrafish, especially in the skeletal systems (scales and median fin skeletons), suggesting that postembryonic development underwent evolutionary divergence in these two teleost species. Conclusions: Our postembryonic staging system of wild‐type goldfish paves the way for careful and appropriate comparison with other teleost species. The staging system will also facilitate comparative ontogenic analyses between wild‐type and mutant goldfish strains, allowing us to closely study the relationship between artificial selection and molecular developmental mechanisms in vertebrates. Developmental Dynamics 244:1485–1518, 2015. © 2015 Wiley Periodicals, Inc. This study provides the first reliable descriptions of normal post‐embryonic stages of wild type goldfish. Several post‐embryonic features of goldfish and zebrafish are diverged in these two teleost lineages. Goldfish larvae and juvenile provide a novel model for the investigation of the evolutionary relationship between domestication and ontogeny.
Collapse
Affiliation(s)
- Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Chun-Ju Chang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Shi-Chieh Liu
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
7
|
Chang CT, Whipps CM. Activity of Antibiotics against Mycobacterium Species Commonly Found in Laboratory Zebrafish. JOURNAL OF AQUATIC ANIMAL HEALTH 2015; 27:88-95. [PMID: 25951167 PMCID: PMC4425249 DOI: 10.1080/08997659.2015.1007176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Zebrafish Danio rerio is a popular vertebrate model organism used in a wide range of research fields. Importance is placed on Zebrafish health and the maintenance of disease-free laboratory fish so that experimental studies are not inadvertently affected. Mycobacteriosis, a common infection of laboratory Zebrafish, is caused by several Mycobacterium species. Little is known regarding the potential of antibiotic treatment for Zebrafish mycobacteriosis; however, treatment of infected Zebrafish may be appropriate to maintain valuable strains. Here, we investigated, in vitro, the antibiotic susceptibility of both rapid- and slow-growing isolates of Mycobacterium species from laboratory Zebrafish. Antibiotic testing was carried out using a commercially available 96-well microtiter plate format. Results indicated that some but not all antibiotics tested were effective at inhibiting mycobacterial growth and that susceptibility varied among species and strains. Tigecycline, tobramycin, clarithromycin, and amikacin were most effective at broad inhibition of rapid-growing mycobacteria; whereas, amikacin, clarithromycin, and rifampin were effective at inhibiting all slow-growing M. marinum strains tested. Results support the potential for targeted antibiotic treatment of Zebrafish infected with mycobacteria, but additional testing should be carried out in vivo.
Collapse
Affiliation(s)
- Carolyn T Chang
- a Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse , New York 13210 , USA
| | | |
Collapse
|
8
|
Lagman D, Callado-Pérez A, Franzén IE, Larhammar D, Abalo XM. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation. PLoS One 2015; 10:e0121330. [PMID: 25806532 PMCID: PMC4373759 DOI: 10.1371/journal.pone.0121330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amalia Callado-Pérez
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkin E. Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xesús M. Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
9
|
Arunachalam M, Raja M, Vijayakumar C, Malaiammal P, Mayden RL. Natural history of zebrafish (Danio rerio) in India. Zebrafish 2013; 10:1-14. [PMID: 23590398 DOI: 10.1089/zeb.2012.0803] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Zebrafish, Danio rerio, is a well-known vertebrate model species widely used in research associated with biomedical areas and comparative and evolutionary biology. Interestingly, despite the importance of this species, little is known about the natural history, habitats, and native distribution. In our study of the species, we collected individuals from twenty-one wild populations from within the species' natural distribution, ranging from streams/rivers of the Western Ghats of Peninsular India to those of the Western and North-Eastern Himalayas. Habitat types are identified from various geographic locations. Danio rerio is largely confined to and most frequently associated with habitats of low flow and with a sandy substrate in secondary and tertiary channels connected with the main channel of a stream/river, or habitats adjacent to wetlands and paddy fields. These connections can be natural channels or man-made irrigation canals, beels, or culture ponds. Among the 21 populations, individuals from two populations (one from Orissa and another from Arunachal Pradesh) were much larger in size (total length) when compared to other populations. The general habitats of Danio rerio vary from small to large mountainous and lowland streams/rivers, wetlands, and paddy fields.
Collapse
|
10
|
Chen WJ, Lavoué S, Mayden RL. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 2013; 67:2218-39. [PMID: 23888847 DOI: 10.1111/evo.12104] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
11
|
Kanuga MK, Benner MJ, Doble JA, Wilson-Leedy JG, Robison BD, Ingermann RL. Effect of aging on male reproduction in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2010; 315:156-61. [PMID: 21370484 DOI: 10.1002/jez.661] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/11/2010] [Accepted: 11/14/2010] [Indexed: 11/08/2022]
Abstract
The study was designed to test the hypothesis that male aging is associated with a change in reproductive function in the zebrafish. Young (290 ± 37 d) and older (911 ± 48 d) males were combined with females (604 ± 24 d) to test the effect of male age on the number and fertility of eggs laid by their mates. 48% of breeding trials with young males and 25% of the trails with older males resulted in egg deposition. Although young males were associated with significantly more successful breeding attempts than older males, number of eggs laid per clutch, number and percent of fertilized eggs and the number and percent living embryos were not statistically different between young and older males. These data suggest that male aging is associated with altered reproductive behavior and/or female response but not in sperm quality per se. Consistent with this interpretation were the findings that percent motility and sperm motility characteristics did not differ between sperm from young and older males as assessed by computer-assisted sperm analysis. However, older males contained higher quantities of extractable sperm than did young males, perhaps associated with fewer successful breeding attempts. Age-related effects on male reproductive in the zebrafish may therefore be a consequence of behavioral or morphological features that play a role in female mate choice and/ or male sexual response.
Collapse
Affiliation(s)
- Manasi K Kanuga
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID 83843-3051, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kuhl H, Beck A, Wozniak G, Canario AVM, Volckaert FAM, Reinhardt R. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 2010; 11:68. [PMID: 20105308 PMCID: PMC2837037 DOI: 10.1186/1471-2164-11-68] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/27/2010] [Indexed: 11/20/2022] Open
Abstract
Background Food supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei) is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model. Results End sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690) were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome. Conclusions The BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish.
Collapse
Affiliation(s)
- Heiner Kuhl
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Chen WJ, Lheknim V, Mayden RL. Molecular phylogeny of the Cobitoidea (Teleostei: Cypriniformes) revisited: position of enigmatic loach Ellopostoma resolved with six nuclear genes. JOURNAL OF FISH BIOLOGY 2009; 75:2197-2208. [PMID: 20738682 DOI: 10.1111/j.1095-8649.2009.02398.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular variation in six nuclear genes provides substantive phylogenetic evidence for the recognition of a new cypriniform family, the Ellopostomatidae, to include the enigmatic Southern Asia loach genus Ellopostoma. The current six loach families form a monophyletic group, with the Nemacheilidae as the sister group to Ellopostomatidae; Vaillantellidae forms the sister group to all families exclusive of Botiidae. While the superfamily Cobitoidea includes eight families, the monophyly of this large clade within the Cypriniformes remains a vexing problem despite extensive molecular analyses and is in need of further investigation.
Collapse
Affiliation(s)
- W-J Chen
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA.
| | | | | |
Collapse
|
14
|
Tsalavouta M, Astudillo O, Byrnes L, Nolan CM. Regulation of expression of zebrafish(Danio rerio) insulin-like growth factor 2 receptor: implications for evolution at theIGF2Rlocus. Evol Dev 2009; 11:546-58. [DOI: 10.1111/j.1525-142x.2009.00361.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Doufexi AE, Mina M. Signaling pathways regulating the expression of Prx1 and Prx2 in the chick mandibular mesenchyme. Dev Dyn 2009; 237:3115-27. [PMID: 18942149 DOI: 10.1002/dvdy.21762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme.
Collapse
Affiliation(s)
- Aikaterini-El Doufexi
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
16
|
Chen WJ, Miya M, Saitoh K, Mayden RL. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene 2008; 423:125-34. [PMID: 18703121 DOI: 10.1016/j.gene.2008.07.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/17/2008] [Accepted: 07/17/2008] [Indexed: 12/11/2022]
Abstract
After the completion of several entire genome projects and a remarkable increase in public genetic databases in the recent years the results of post-genomic analyses can facilitate a better understanding of the genomic evolution underlying the diversity of organisms and the complexity of gene function. This influx of genomic information and resources is also beneficial to the discipline of systematic biology. In this paper, we describe a set of 6 previous and 22 new PCR/sequencing primers for RAG1, Rhodopsin and four novel nuclear markers from IRBP, EGR1, EGR2B and EGR3 that we developed through an approach making use of public genetic/genomic data mining for one of the ongoing tree of life projects aimed at understanding the evolutionary relationships of the planet's largest clade of freshwater fishes--the Cypriniformes. The primers and laboratory protocols presented here were successfully tested in 33 species comprising all cypriniform family and subfamily groups. Phylogenetic performance of each gene, as well as their implications in the investigation of the evolution of cypriniform fishes were assessed and discussed.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA.
| | | | | | | |
Collapse
|
17
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|