1
|
Oberholzer Z, Loubser C, Nikitina NV. Fgf17: A regulator of the mid/hind brain boundary in mammals. Differentiation 2024; 140:100813. [PMID: 39327214 DOI: 10.1016/j.diff.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2. In humans, FGF17 can be alternatively spliced to produce two isoforms (FGF17a and b) whereas three isoforms are present in mice (Fgf17a, b, and c), however, only Fgf17a and Fgf17b produce functional proteins. Fgf17 is a secreted protein with a cleavable N-terminal signal peptide and contains two binding domains, namely a conserved core region and a heparin binding site. Fgf17 mRNA is expressed in a wide range of different tissues during development, including the rostral patterning centre, midbrain-hindbrain boundary, tailbud mesoderm, olfactory placode, mammary glands, and smooth muscle precursors of major arteries. Given its broad expression pattern during development, it is surprising that adult Fgf17-/- mice displayed a rather mild phenotype; such that mutants only exhibited morphological changes in the frontal cortex and mid/hind brain boundary and changes in certain social behaviours. In humans, FGF17 mutations are implicated in several diseases, including Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome. FGF17 mutations contribute to CHH/KS in 1.1% of affected individuals, often presenting in conjunction with mutations in other FGF pathway genes like FGFR1 and FLRT3. FGF17 mutations were also identified in patients diagnosed with Dandy-Walker malformation and Pituitary Stalk Interruption Syndrome, however, it remains unclear how FGF17 is implicated in these diseases. Altered FGF17 expression has been observed in several cancers, including prostate cancer, hematopoietic cancers (acute myeloid leukemia and acute lymphoblastic leukemia), glioblastomas, perineural invasion in cervical cancer, and renal cell carcinomas. Furthermore, FGF17 has demonstrated neuroprotective effects, particularly during ischemic stroke, and has been shown to improve cognitive function in ageing mice.
Collapse
Affiliation(s)
- Zane Oberholzer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Chiron Loubser
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Natalya V Nikitina
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| |
Collapse
|
2
|
Yi X, Kemppainen P, Reid K, Chen Y, Rastas P, Fraimout A, Merilä J. Heterogeneous genomic architecture of skeletal armour traits in sticklebacks. J Evol Biol 2024; 37:995-1008. [PMID: 39073424 DOI: 10.1093/jeb/voae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Jin C, Yan K, Wang M, Song W, Kong X, Zhang Z. Identification, Characterization and Functional Analysis of Fibroblast Growth Factors in Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2023; 24:ijms24043626. [PMID: 36835037 PMCID: PMC9958866 DOI: 10.3390/ijms24043626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factors (FGFs) are short polypeptides that play essential roles in various cellular biological processes, including cell migration, proliferation, and differentiation, as well as tissue regeneration, immune response, and organogenesis. However, studies focusing on the characterization and function of FGF genes in teleost fishes are still limited. In this study, we identified and characterized expression patterns of 24 FGF genes in various tissues of embryonic and adult specimens of the black rockfish (Sebates schlegelii). Nine FGF genes were found to play essential roles in myoblast differentiation, as well as muscle development and recovery in juvelines of S. schlegelii. Moreover, sex-biased expression pattern of multiple FGF genes was recorded in the species' gonads during its development. Among them, expression of the FGF1 gene was recorded in interstitial and sertoli cells of testes, promoting germ-cell proliferation and differentiation. In sum, the obtained results enabled systematic and functional characterization of FGF genes in S. schlegelii, laying a foundation for further studies on FGF genes in other large teleost fishes.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
4
|
Conserved Mechanisms, Novel Anatomies: The Developmental Basis of Fin Evolution and the Origin of Limbs. DIVERSITY 2021. [DOI: 10.3390/d13080384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.
Collapse
|
5
|
Kaitetzidou E, Katsiadaki I, Lagnel J, Antonopoulou E, Sarropoulou E. Unravelling paralogous gene expression dynamics during three-spined stickleback embryogenesis. Sci Rep 2019; 9:3752. [PMID: 30842559 PMCID: PMC6403355 DOI: 10.1038/s41598-019-40127-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Development requires the implementation of a plethora of molecular mechanisms, involving a large set of genes to ensure proper cell differentiation, morphogenesis of tissues and organs as well as the growth of the organism. Genome duplication and resulting paralogs are considered to provide the raw genetic materials important for new adaptation opportunities and boosting evolutionary innovation. The present study investigated paralogous genes, involved in three-spined stickleback (Gasterosteus aculeatus) development. Therefore, the transcriptomes of five early stages comprising developmental leaps were explored. Obtained expression profiles reflected the embryo's needs at different stages. Early stages, such as the morula stage comprised transcripts mainly involved in energy requirements while later stages were mostly associated with GO terms relevant to organ development and morphogenesis. The generated transcriptome profiles were further explored for differential expression of known and new paralogous genes. Special attention was given to hox genes, with hoxa13a being of particular interest and to pigmentation genes where itgb1, involved in the melanophore development, displayed a complementary expression pattern throughout studied stages. Knowledge obtained by untangling specific paralogous gene functions during development might not only significantly contribute to the understanding of teleost ontogenesis but might also shed light on paralogous gene evolution.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science, (Cefas), Weymouth, UK
| | - Jacques Lagnel
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.,Institut National de la Recherche Agronomique (INRA), Génétique et Amélioration des Fruits et Légumes (GALF), Montfavet Cedex, France
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| |
Collapse
|
6
|
Schulz-Mirbach T, Ladich F, Plath M, Heß M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev Camb Philos Soc 2018; 94:457-482. [DOI: 10.1111/brv.12463] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tanja Schulz-Mirbach
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| | - Friedrich Ladich
- Department of Behavioural Biology; University of Vienna; Althanstrasse 14, 1090 Vienna Austria
| | - Martin Plath
- College of Animal Science & Technology; Northwest A&F University; 22 Xinong Road, Yangling Shaanxi China
| | - Martin Heß
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| |
Collapse
|
7
|
Wood TWP, Nakamura T. Problems in Fish-to-Tetrapod Transition: Genetic Expeditions Into Old Specimens. Front Cell Dev Biol 2018; 6:70. [PMID: 30062096 PMCID: PMC6054942 DOI: 10.3389/fcell.2018.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fish-to-tetrapod transition is one of the fundamental problems in evolutionary biology. A significant amount of paleontological data has revealed the morphological trajectories of skeletons, such as those of the skull, vertebrae, and appendages in vertebrate history. Shifts in bone differentiation, from dermal to endochondral bones, are key to explaining skeletal transformations during the transition from water to land. However, the genetic underpinnings underlying the evolution of dermal and endochondral bones are largely missing. Recent genetic approaches utilizing model organisms—zebrafish, frogs, chickens, and mice—reveal the molecular mechanisms underlying vertebrate skeletal development and provide new insights for how the skeletal system has evolved. Currently, our experimental horizons to test evolutionary hypotheses are being expanded to non-model organisms with state-of-the-art techniques in molecular biology and imaging. An integration of functional genomics, developmental genetics, and high-resolution CT scanning into evolutionary inquiries allows us to reevaluate our understanding of old specimens. Here, we summarize the current perspectives in genetic programs underlying the development and evolution of the dermal skull roof, shoulder girdle, and appendages. The ratio shifts of dermal and endochondral bones, and its underlying mechanisms, during the fish-to-tetrapod transition are particularly emphasized. Recent studies have suggested the novel cell origins of dermal bones, and the interchangeability between dermal and endochondral bones, obscuring the ontogenetic distinction of these two types of bones. Assimilation of ontogenetic knowledge of dermal and endochondral bones from different structures demands revisions of the prevalent consensus in the evolutionary mechanisms of vertebrate skeletal shifts.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
8
|
Moriyama Y, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Brief Funct Genomics 2018; 17:329-338. [DOI: 10.1093/bfgp/ely007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuuta Moriyama
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | | |
Collapse
|
9
|
Leerberg DM, Sano K, Draper BW. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS Genet 2017; 13:e1006993. [PMID: 28873404 PMCID: PMC5600409 DOI: 10.1371/journal.pgen.1006993] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/15/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.
Collapse
Affiliation(s)
- Dena M. Leerberg
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Kaori Sano
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Graduate school of Science and Technologies, Sophia University, Tokyo, Tokyo, Japan
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
10
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Mao Q, Stinnett HK, Ho RK. Asymmetric cell convergence-driven zebrafish fin bud initiation and pre-pattern requires Tbx5a control of a mesenchymal Fgf signal. Development 2015; 142:4329-39. [PMID: 26525676 DOI: 10.1242/dev.124750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/27/2015] [Indexed: 01/20/2023]
Abstract
Tbx5 plays a pivotal role in vertebrate forelimb initiation, and loss-of-function experiments result in deformed or absent forelimbs in all taxa studied to date. Combining single-cell fate mapping and three-dimensional cell tracking in the zebrafish, we describe a Tbx5a-dependent cell convergence pattern that is both asymmetric and topological within the fin-field lateral plate mesoderm during early fin bud initiation. We further demonstrate that a mesodermal Fgf24 convergence cue controlled by Tbx5a underlies this asymmetric convergent motility. Partial reduction in Tbx5a or Fgf24 levels disrupts the normal fin-field cell motility gradient and results in anteriorly biased perturbations of fin-field cell convergence and truncations in the pectoral fin skeleton, resembling aspects of the forelimb skeletal defects that define individuals with Holt-Oram syndrome. This study provides a quantitative reference model for fin-field cell motility during vertebrate fin bud initiation and suggests that a pre-pattern of anteroposterior fate specification is already present in the fin-field before or during migration because perturbations to these early cell movements result in the alteration of specific fates.
Collapse
Affiliation(s)
- Qiyan Mao
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Haley K Stinnett
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Robert K Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Abstract
It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 2014; 289:1045-60. [PMID: 25092473 DOI: 10.1007/s00438-014-0889-2] [Citation(s) in RCA: 553] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
Whole-genome duplication (WGD) events have shaped the history of many evolutionary lineages. One such duplication has been implicated in the evolution of teleost fishes, by far the most species-rich vertebrate clade. After initial controversy, there is now solid evidence that such event took place in the common ancestor of all extant teleosts. It is termed teleost-specific (TS) WGD. After WGD, duplicate genes have different fates. The most likely outcome is non-functionalization of one duplicate gene due to the lack of selective constraint on preserving both. Mechanisms that act on preservation of duplicates are subfunctionalization (partitioning of ancestral gene functions on the duplicates), neofunctionalization (assigning a novel function to one of the duplicates) and dosage selection (preserving genes to maintain dosage balance between interconnected components). Since the frequency of these mechanisms is influenced by the genes' properties, there are over-retained classes of genes, such as highly expressed ones and genes involved in neural function. The consequences of the TS-WGD, especially its impact on the massive radiation of teleosts, have been matter of controversial debate. It is evident that gene duplications are crucial for generating complexity and that WGDs provide large amounts of raw material for evolutionary adaptation and innovation. However, it is less clear whether the TS-WGD is directly linked to the evolutionary success of teleosts and their radiation. Recent studies let us conclude that TS-WGD has been important in generating teleost complexity, but that more recent ecological adaptations only marginally related to TS-WGD might have even contributed more to diversification. It is likely, however, that TS-WGD provided teleosts with diversification potential that can become effective much later, such as during phases of environmental change.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
14
|
Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. BMC Evol Biol 2014; 14:123. [PMID: 24903151 PMCID: PMC4064522 DOI: 10.1186/1471-2148-14-123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components (‘conotoxins’), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species’ ‘venom gene space’. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Results Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci (‘under-dispersed’ expression of available genes) while others express sets of more disparate genes (‘over-dispersed’ expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Conclusions Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
Collapse
|
15
|
EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 2013; 33:17763-76. [PMID: 24198367 DOI: 10.1523/jneurosci.2659-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca(2+)-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15-20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1.
Collapse
|
16
|
Clanton JA, Hope KD, Gamse JT. Fgf signaling governs cell fate in the zebrafish pineal complex. Development 2013; 140:323-32. [PMID: 23250206 DOI: 10.1242/dev.083709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Left-right (L-R) asymmetries in neuroanatomy exist throughout the animal kingdom, with implications for function and behavior. The molecular mechanisms that control formation of such asymmetries are beginning to be understood. Significant progress has been made by studying the zebrafish parapineal organ, a group of neurons on the left side of the epithalamus. Parapineal cells arise from the medially located pineal complex anlage and migrate to the left side of the brain. We have found that Fgf8a regulates a fate decision among anterior pineal complex progenitors that occurs just prior to the initiation of leftward migration. Cell fate analysis shows that in the absence of Fgf8a a subset of cells in the anterior pineal complex anlage differentiate as cone photoreceptors rather than parapineal neurons. Fgf8a acts permissively to promote parapineal fate in conjunction with the transcription factor Tbx2b, but might also block cone photoreceptor fate. We conclude that this subset of anterior pineal complex precursors, which normally become parapineal cells, are bipotential and require Fgf8a to maintain parapineal identity and/or prevent cone identity.
Collapse
Affiliation(s)
- Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205, USA
| | | | | |
Collapse
|
17
|
Tanaka M. Molecular and evolutionary basis of limb field specification and limb initiation. Dev Growth Differ 2012; 55:149-63. [PMID: 23216351 DOI: 10.1111/dgd.12017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
Specification of limb field and initiation of limb development involve multiple steps, each of which is tightly regulated both spatially and temporally. Recent developmental analyses on various vertebrates have provided insights into the molecular mechanisms that specify limb field and have revealed several genetic interactions of signals involved in limb initiation processes. Furthermore, new approaches to the study of the developmental mechanisms of the lateral plate mesoderm of amphioxus and lamprey embryos have given us clues to understand the evolutionary scenarios that led to the acquisition of paired appendages during evolution. This review highlights such recent findings and discusses the mechanisms of limb field specification and limb bud initiation during development and evolution.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan.
| |
Collapse
|
18
|
Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Dev Cell 2012; 23:1219-29. [DOI: 10.1016/j.devcel.2012.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/26/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023]
|
19
|
Abstract
'Evo-devo', an interdisciplinary field based on developmental biology, includes studies on the evolutionary processes leading to organ morphologies and functions. One fascinating theme in evo-devo is how fish fins evolved into tetrapod limbs. Studies by many scientists, including geneticists, mathematical biologists, and paleontologists, have led to the idea that fins and limbs are homologous organs; now it is the job of developmental biologists to integrate these data into a reliable scenario for the mechanism of fin-to-limb evolution. Here, we describe the fin-to-limb transition based on key recent developmental studies from various research fields that describe mechanisms that may underlie the development of fins, limb-like fins, and limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
20
|
Distinct and conserved prominin-1/CD133-positive retinal cell populations identified across species. PLoS One 2011; 6:e17590. [PMID: 21407811 PMCID: PMC3047580 DOI: 10.1371/journal.pone.0017590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/28/2011] [Indexed: 02/08/2023] Open
Abstract
Besides being a marker of various somatic stem cells in mammals, prominin-1 (CD133) plays a role in maintaining the photoreceptor integrity since mutations in the PROM1 gene are linked with retinal degeneration. In spite of that, little information is available regarding its distribution in eyes of non-mammalian vertebrates endowed with high regenerative abilities. To address this subject, prominin-1 cognates were isolated from axolotl, zebrafish and chicken, and their retinal compartmentalization was investigated and compared to that of their mammalian orthologue. Interestingly, prominin-1 transcripts--except for the axolotl--were not strictly restricted to the outer nuclear layer (i.e., photoreceptor cells), but they also marked distinct subdivisions of the inner nuclear layer (INL). In zebrafish, where the prominin-1 gene is duplicated (i.e., prominin-1a and prominin-1b), a differential expression was noted for both paralogues within the INL being localized either to its vitreal or scleral subdivision, respectively. Interestingly, expression of prominin-1a within the former domain coincided with Pax-6-positive cells that are known to act as progenitors upon injury-induced retino-neurogenesis. A similar, but minute population of prominin-1-positive cells located at the vitreal side of the INL was also detected in developing and adult mice. In chicken, however, prominin-1-positive cells appeared to be aligned along the scleral side of the INL reminiscent of zebrafish prominin-1b. Taken together our data indicate that in addition to conserved expression of prominin-1 in photoreceptors, significant prominin-1-expressing non-photoreceptor retinal cell populations are present in the vertebrate eye that might represent potential sources of stem/progenitor cells for regenerative therapies.
Collapse
|
21
|
Abstract
Zebrafish offers significant opportunities for the investigation of vertebrate development, evolution, physiology, and behavior and provides numerous models of human disease. Connecting zebrafish phenogenetic biology to that of humans and other vertebrates, however, requires the proper assignment of gene orthologies. Orthology assignments by phylogenetic analysis or by reciprocal best sequence similarity searches can lead to errors, especially in cases of gene duplication followed by gene loss or rapid lineage-specific gene evolution. Conserved synteny analysis provides a method that helps overcome such problems. Here we describe conserved synteny analysis for zebrafish genes and discuss the Synteny Database, a website specifically designed to identify conserved syntenies for zebrafish that takes into account the teleost genome duplication (TGD). We utilize the Synteny Database to demonstrate its power to resolve our understanding of the evolution of nerve growth factor receptor related genes, including Ngfr and the enigmatic Nradd. Finally, we compare conserved syntenies between zebrafish, stickleback, spotted gar, and human to understand the timing of chromosome rearrangements in teleost genome evolution. An improved understanding of gene histories that comes from the application of tools provided by the Synteny Database can facilitate the connectivity of zebrafish and human genomes.
Collapse
Affiliation(s)
- Julian M Catchen
- University of Oregon, Center for Ecology and Evolutionary Biology, Eugene Oregon, USA
| | | | | |
Collapse
|
22
|
Jovelin R, Yan YL, He X, Catchen J, Amores A, Canestro C, Yokoi H, Postlethwait JH. Evolution of developmental regulation in the vertebrate FgfD subfamily. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:33-56. [PMID: 19562753 DOI: 10.1002/jez.b.21307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factors (Fgfs) encode small signaling proteins that help regulate embryo patterning. Fgfs fall into seven families, including FgfD. Nonvertebrate chordates have a single FgfD gene; mammals have three (Fgf8, Fgf17, and Fgf18); and teleosts have six (fgf8a, fgf8b, fgf17, fgf18a, fgf18b, and fgf24). What are the evolutionary processes that led to the structural duplication and functional diversification of FgfD genes during vertebrate phylogeny? To study this question, we investigated conserved syntenies, patterns of gene expression, and the distribution of conserved noncoding elements (CNEs) in FgfD genes of stickleback and zebrafish, and compared them with data from cephalochordates, urochordates, and mammals. Genomic analysis suggests that Fgf8, Fgf17, Fgf18, and Fgf24 arose in two rounds of whole genome duplication at the base of the vertebrate radiation; that fgf8 and fgf18 duplications occurred at the base of the teleost radiation; and that Fgf24 is an ohnolog that was lost in the mammalian lineage. Expression analysis suggests that ancestral subfunctions partitioned between gene duplicates and points to the evolution of novel expression domains. Analysis of CNEs, at least some of which are candidate regulatory elements, suggests that ancestral CNEs partitioned between gene duplicates. These results help explain the evolutionary pathways by which the developmentally important family of FgfD molecules arose and the deduced principles that guided FgfD evolution are likely applicable to the evolution of developmental regulation in many vertebrate multigene families.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Komisarczuk AZ, Kawakami K, Becker TS. Cis-regulation and chromosomal rearrangement of the fgf8 locus after the teleost/tetrapod split. Dev Biol 2009; 336:301-12. [PMID: 19782672 DOI: 10.1016/j.ydbio.2009.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/02/2009] [Accepted: 09/18/2009] [Indexed: 12/23/2022]
Abstract
The complex expression pattern of fibroblast growth factor 8 (Fgf8) and the cellular responses dependent on concentration of its mRNA in vertebrates suggest that Fgf8 should be tightly controlled at the transcriptional level. We found zebrafish conserved noncoding elements (CNEs) with pan-vertebrate as well as fish-specific orthologous sequences from across 200 kb of the zebrafish fgf8a genomic regulatory block to direct reporter expression in patterns consistent with the expression pattern of fgf8a. These included elements from inside the introns of the skin-specific slc2a15a and the ubiquitously expressed fbxw4 bystander genes. The fgf8a/fbxw4 gene pair, which has remained joined throughout three whole genome duplications in chordate evolution, is inverted in teleost genomes, but CNEs across both evolutionary breakpoints showed specific activity. While some CNEs directed highly reproducible expression patterns, others were subject to variation but showed, in a subset of transgenes, expression in the apical ectodermal ridge, the anterior boundaries of somites and the midbrain-hindbrain boundary, specific Fgf8 signaling domains, suggesting that their activity may be context specific. A human element with tetrapod-specific orthologous sequences directed reporter expression to the vasculature, possibly corresponding to a tetrapod innovation. We conclude that fgf8a transcriptional regulation employs pan-vertebrate and teleost-specific enhancers dispersed over three genes in the zebrafish genome.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
24
|
Catchen JM, Conery JS, Postlethwait JH. Automated identification of conserved synteny after whole-genome duplication. Genes Dev 2009; 19:1497-505. [PMID: 19465509 PMCID: PMC2720179 DOI: 10.1101/gr.090480.108] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/13/2009] [Indexed: 11/25/2022]
Abstract
An important objective for inferring the evolutionary history of gene families is the determination of orthologies and paralogies. Lineage-specific paralog loss following whole-genome duplication events can cause anciently related homologs to appear in some assays as orthologs. Conserved synteny-the tendency of neighboring genes to retain their relative positions and orders on chromosomes over evolutionary time-can help resolve such errors. Several previous studies examined genome-wide syntenic conservation to infer the contents of ancestral chromosomes and provided insights into the architecture of ancestral genomes, but did not provide methods or tools applicable to the study of the evolution of individual gene families. We developed an automated system to identify conserved syntenic regions in a primary genome using as outgroup a genome that diverged from the investigated lineage before a whole-genome duplication event. The product of this automated analysis, the Synteny Database, allows a user to examine fully or partially assembled genomes. The Synteny Database is optimized for the investigation of individual gene families in multiple lineages and can detect chromosomal inversions and translocations as well as ohnologs (paralogs derived by whole-genome duplication) gone missing. To demonstrate the utility of the system, we present a case study of gene family evolution, investigating the ARNTL gene family in the genomes of Ciona intestinalis, amphioxus, zebrafish, and human.
Collapse
Affiliation(s)
- Julian M. Catchen
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403, USA
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - John S. Conery
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
25
|
Braasch I, Liedtke D, Volff JN, Schartl M. Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigment Cell Melanoma Res 2009; 22:839-50. [PMID: 19659755 DOI: 10.1111/j.1755-148x.2009.00614.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The function of the tyrosinase-related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species-specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1-deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.
Collapse
Affiliation(s)
- Ingo Braasch
- Physiological Chemistry I, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | | | | | | |
Collapse
|
26
|
Klüver N, Herpin A, Braasch I, Driessle J, Schartl M. Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance. Dev Biol 2008; 325:179-88. [PMID: 18992736 DOI: 10.1016/j.ydbio.2008.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 09/23/2008] [Accepted: 10/12/2008] [Indexed: 11/16/2022]
Abstract
In mammals, the Wilms' tumor suppressor gene, Wt1, encodes a transcription factor critical for development of the urogenital system. In teleost fish, however, two wt1 genes have been identified. In medaka wt1a is expressed in the lateral plate mesoderm during early embryogenesis. Later in development, wt1a is additionally expressed in the somatic cells of the gonadal primordium. We show here for the first time that in teleosts wt1 gene expression is observed during gonad development. Wt1b is expressed later during embryogenesis and is not expressed in the gonadal primordium. Analysis of morpholino knockdown experiments revealed functions of wt1 genes in pronephros development. Unexpectedly, by down-regulating Wt1a protein we observed wt1b expression during embryogenesis in the wildtype wt1a expression domains including somatic cells of the gonadal primordium. Interestingly, neither wt1a nor wt1b morphants showed effects on the gonad development, whereas the double knockdown of wt1a and wt1b displayed strong influences on the number of primordial germ cell (PGC) during gonad development. Our results indicate that medaka wt1 co-orthologs show genetic redundancy in PGC maintenance or survival through responsive backup circuits. This provides first evidence for a conditional co-regulation of these genes within a transcriptional network.
Collapse
Affiliation(s)
- Nils Klüver
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
One of the most significant problems facing developmental biologists who do not work on an organism with well-developed genetics - and even for some who do - is how to inhibit the action of a gene of interest during development so as to learn about its normal biological function. A widely adopted approach is to use antisense technologies, and especially morpholino antisense oligonucleotides. In this article, we review the use of such reagents and present examples of how they have provided insights into developmental mechanisms. We also discuss how the use of morpholinos can lead to misleading results, including off-target effects, and we suggest controls that will allow researchers to interpret morpholino experiments correctly.
Collapse
Affiliation(s)
- Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
28
|
|