1
|
Schneider RA. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Annu Rev Genet 2024; 58:433-454. [PMID: 39227135 PMCID: PMC11777486 DOI: 10.1146/annurev-genet-111523-101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diverse research programs employing complementary strategies have been uncovering cellular, molecular, and genetic mechanisms essential to avian beak development and evolution. In reviewing these discoveries, I offer an interdisciplinary perspective on bird beaks that spans their derivation from jaws of dinosaurian reptiles, their anatomical and ecological diversification across major taxonomic groups, their common embryonic origins, their intrinsic patterning processes, and their structural integration. I describe how descriptive and experimental approaches, including gene expression and cell lineage analyses, tissue recombinations, surgical transplants, gain- and loss-of-function methods, geometric morphometrics, comparative genomics, and genome-wide association studies, have identified key constituent parts and putative genes regulating beak morphogenesis and evolution. I focus throughout on neural crest mesenchyme, which generates the beak skeleton and other components, and describe how these embryonic progenitor cells mediate species-specific pattern and link form and function as revealed by 20 years of research using chimeras between quail and duck embryos.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA;
| |
Collapse
|
2
|
Sadier A, Anthwal N, Krause AL, Dessalles R, Lake M, Bentolila LA, Haase R, Nieves NA, Santana SE, Sears KE. Bat teeth illuminate the diversification of mammalian tooth classes. Nat Commun 2023; 14:4687. [PMID: 37607943 PMCID: PMC10444822 DOI: 10.1038/s41467-023-40158-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tooth classes are an innovation that has contributed to the evolutionary success of mammals. However, our understanding of the mechanisms by which tooth classes diversified remain limited. We use the evolutionary radiation of noctilionoid bats to show how the tooth developmental program evolved during the adaptation to new diet types. Combining morphological, developmental and mathematical modeling approaches, we demonstrate that tooth classes develop through independent developmental cascades that deviate from classical models. We show that the diversification of tooth number and size is driven by jaw growth rate modulation, explaining the rapid gain/loss of teeth in this clade. Finally, we mathematically model the successive appearance of tooth buds, supporting the hypothesis that growth acts as a key driver of the evolution of tooth number and size. Our work reveal how growth, by tinkering with reaction/diffusion processes, drives the diversification of tooth classes and other repeated structure during adaptive radiations.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | - Renaud Dessalles
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Greenshield, 46 rue Saint-Antoine, 75004, Paris, France
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Haase
- DFG Cluster of Excellence "Physics of Life", TU Dresden, Dresden, Germany
| | - Natalie A Nieves
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Paluh DJ, Dillard WA, Stanley EL, Fraser GJ, Blackburn DC. Re-evaluating the morphological evidence for the re-evolution of lost mandibular teeth in frogs. Evolution 2021; 75:3203-3213. [PMID: 34674263 PMCID: PMC9299036 DOI: 10.1111/evo.14379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Dollo's law of irreversibility states that once a complex structure is lost, it cannot be regained in the same form. Several putative exceptions to Dollo's law have been identified using phylogenetic comparative methods, but the anatomy and development of these traits are often poorly understood. Gastrotheca guentheri is renowned as the only frog with teeth on the lower jaw. Mandibular teeth were lost in the ancestor of frogs more than 200 million years ago and subsequently regained in G. guentheri. Little is known about the teeth in this species despite being a frequent example of trait “re‐evolution,” leaving open the possibility that it may have mandibular pseudoteeth. We assessed the dental anatomy of G. guentheri using micro‐computed tomography and histology and confirmed the longstanding assumption that true mandibular teeth are present. Remarkably, the mandibular teeth of G. guentheri are nearly identical in gross morphology and development to upper jaw teeth in closely related species. The developmental genetics of tooth formation are unknown in this possibly extinct species. Our results suggest that an ancestral odontogenic pathway has been conserved but suppressed in the lower jaw since the origin of frogs, providing a possible mechanism underlying the re‐evolution of lost mandibular teeth.
Collapse
Affiliation(s)
- Daniel J Paluh
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.,Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Wesley A Dillard
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
4
|
Hovorakova M, Zahradnicek O, Bartos M, Hurnik P, Stransky J, Stembirek J, Tucker AS. Reawakening of Ancestral Dental Potential as a Mechanism to Explain Dental Pathologies. Integr Comp Biol 2021; 60:619-629. [PMID: 32492167 DOI: 10.1093/icb/icaa053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During evolution, there has been a trend to reduce both the number of teeth and the location where they are found within the oral cavity. In mammals, the formation of teeth is restricted to a horseshoe band of odontogenic tissue, creating a single dental arch on the top and bottom of the jaw. Additional teeth and structures containing dental tissue, such as odontogenic tumors or cysts, can appear as pathologies. These tooth-like structures can be associated with the normal dentition, appearing within the dental arch, or in nondental areas. The etiology of these pathologies is not well elucidated. Reawakening of the potential to form teeth in different parts of the oral cavity could explain the origin of dental pathologies outside the dental arch, thus such pathologies are a consequence of our evolutionary history. In this review, we look at the changing pattern of tooth formation within the oral cavity during vertebrate evolution, the potential to form additional tooth-like structures in mammals, and discuss how this knowledge shapes our understanding of dental pathologies in humans.
Collapse
Affiliation(s)
- Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Oldrich Zahradnicek
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Bartos
- Department of Stomatology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Katerinska 32, 12801 Prague 2, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 128 00, Czech Republic
| | - Pavel Hurnik
- Department of Pathology, University Hospital Ostrava, 17. listopadu 1790, Ostrava-Poruba, 708 52, Czech Republic.,Department of Pathology at Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava-Zabreh, 703 00, Czech Republic
| | - Jiri Stransky
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic
| | - Jan Stembirek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno 2, Czech Republic
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
5
|
Paluh DJ, Riddell K, Early CM, Hantak MM, Jongsma GFM, Keeffe RM, Magalhães Silva F, Nielsen SV, Vallejo-Pareja MC, Stanley EL, Blackburn DC. Rampant tooth loss across 200 million years of frog evolution. eLife 2021; 10:e66926. [PMID: 34060471 PMCID: PMC8169120 DOI: 10.7554/elife.66926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Teeth are present in most clades of vertebrates but have been lost completely several times in actinopterygian fishes and amniotes. Using phenotypic data collected from over 500 genera via micro-computed tomography, we provide the first rigorous assessment of the evolutionary history of dentition across all major lineages of amphibians. We demonstrate that dentition is invariably present in caecilians and salamanders, but teeth have been lost completely more than 20 times in frogs, a much higher occurrence of edentulism than in any other vertebrate group. The repeated loss of teeth in anurans is associated with a specialized diet of small invertebrate prey as well as shortening of the lower jaw, but it is not correlated with a reduction in body size. Frogs provide an unparalleled opportunity for investigating the molecular and developmental mechanisms of convergent tooth loss on a large phylogenetic scale.
Collapse
Affiliation(s)
- Daniel J Paluh
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Karina Riddell
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Catherine M Early
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Biology Department, Science Museum of MinnesotaSaint PaulUnited States
| | - Maggie M Hantak
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Gregory FM Jongsma
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Rachel M Keeffe
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Fernanda Magalhães Silva
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Programa de Pós Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emilio GoeldiBelémBrazil
| | - Stuart V Nielsen
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - María Camila Vallejo-Pareja
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| |
Collapse
|
6
|
A genotype:phenotype approach to testing taxonomic hypotheses in hominids. Naturwissenschaften 2020; 107:40. [PMID: 32870408 DOI: 10.1007/s00114-020-01696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.
Collapse
|
7
|
Wakamatsu Y, Egawa S, Terashita Y, Kawasaki H, Tamura K, Suzuki K. Homeobox code model of heterodont tooth in mammals revised. Sci Rep 2019; 9:12865. [PMID: 31492950 PMCID: PMC6731288 DOI: 10.1038/s41598-019-49116-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
Heterodonty is one of the hallmarks of mammals. It has been suggested that, homeobox genes, differentially expressed in the ectomesenchyme of the jaw primordium along the distal-proximal axis, would determine the tooth classes (homeobox code model) based on mouse studies. Because mouse has highly specialized tooth pattern lacking canine and premolars (dental formula: 1003/1003, for upper and lower jaws, respectively), it is unclear if the suggested model could be applied for mammals with all tooth classes, including human. We thus compared the homeobox code gene expressions in various mammals, such as opossum (5134/4134), ferret (3131/3132), as well as mouse. We found that Msx1 and BarX1 expression domains in the jaw primordium of the opossum and ferret embryos show a large overlap, but such overlap is small in mouse. Detailed analyses of gene expressions and subsequent morphogenesis of tooth germ in the opossum indicated that the Msx1/BarX1 double-positive domain will correspond to the premolar region, and Alx3-negative/Msx1-positive/BarX1-negative domain will correspond to canine. This study therefore provides a significant update of the homeobox code model in the mammalian heterodonty. We also show that the modulation of FGF-mediated Msx1 activation contributes to the variation in the proximal Msx1 expression among species.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| | - Shiro Egawa
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8578, Japan
| | - Yukari Terashita
- Department of Medical Neuroscience, Kanazawa University, Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Kanazawa University, Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8578, Japan
| | - Kunihiro Suzuki
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
8
|
Manipulation of Developmental Function in Turtles with Notes on Alligators. Methods Mol Biol 2019. [PMID: 30737695 DOI: 10.1007/978-1-4939-9009-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Reptiles have great taxonomic diversity that is reflected in their morphology, ecology, physiology, modes of reproduction, and development. Interest in comparative and evolutionary developmental biology makes protocols for the study of reptile embryos invaluable resources. The relatively large size, seasonal breeding, and long gestation times of turtles epitomize the challenges faced by the developmental biologist. We describe protocols for the preparation of turtle embryos for ex ovo culture, electroporation, in situ hybridization, and microcomputed tomography. Because these protocols have been adapted and optimized from methods used for frog, chick, and mouse embryos, it is likely that they could be used for other reptilian species. Notes are included for alligator embryos where appropriate.
Collapse
|
9
|
Phen A, Greer J, Uppal J, Der J, Boughner JC. Upper jaw development in the absence of teeth: New insights for craniodental evo-devo integration. Evol Dev 2018; 20:146-159. [PMID: 29998528 DOI: 10.1111/ede.12261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In p63-null mice (p63-/- ), teeth fail to form but the mandible forms normally; conversely, the upper jaw skeleton is malformed. Here we explored whether lack of dental tissues contributed to midfacial dysmorphologies in p63-/- mice by testing if facial prominence defects appeared before odontogenesis failed. We also investigated gene dose effects by testing if one wild type (WT) p63 allele (p63+/- ) was sufficient for normal upper jaw skeleton formation. We micro-CT scanned PFA-fixed p63-/- , p63+/- , and WT (p63+/+ ) adult and embryonic mice aged E10-E14. Next, we landmarked mandibular (MdP), maxillary (MxP) and nasal prominences (NPs), and facial bones. 3D landmark data were assessed using Principal Component, Canonical Variate, Partial Least Squares, and other statistical analyses. The p63-/- embryos showed MxP and NP malformations by E12, despite the presence of dental tissues. MdP shape was comparable among p63-/- , p63+/- , and p63+/+ embryos. Upper jaw shape was comparable between p63+/+ and p63+/- adults. The upper jaw and its dentition both require p63 signaling, but not each other's presence, to form properly. One WT p63 allele enables normal midfacial morphogenesis; gene dose may be a target for jaw macroevolution. Jaw-specific genetic mechanisms likely integrate the evo-devo of dentitions with upper versus lower jaws.
Collapse
Affiliation(s)
- Alyssa Phen
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justine Greer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jasmene Uppal
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jasmine Der
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Julia C Boughner
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Grieco TM, Richman JM. Coordination of bilateral tooth replacement in the juvenile gecko is continuous with in ovo patterning. Evol Dev 2018; 20:51-64. [PMID: 29318754 PMCID: PMC5834371 DOI: 10.1111/ede.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed a test of how function impacts a genetically programmed process that continues into postnatal life. Using the dentition of the polyphyodont gecko as our model, tooth shedding was recorded longitudinally across the jaw. We compared two time periods: one in which teeth were patterned symmetrically in ovo and a later period when teeth were initiated post-hatching. By pairing shedding events on the right and left sides, we found the patterns of tooth loss are symmetrical and stable between periods, with only subtle deviations. Contralateral tooth positions shed within 3-4 days of each other in most animals (7/10). A minority of animals (3/10) had systematic tooth position shifts between right and left sides, likely due to changes in functional tooth number. Our results suggest that in addition to reproducible organogenesis of individual teeth, there is also a neotenic retention of jaw-wide dental patterning in reptiles. Finer analysis of regional asymmetries revealed changes to which contralateral position shed first, affecting up to one quarter of the jaw (10 tooth positions). Once established, these patterns were retained longitudinally. Taken together, the data support regional and global mechanisms of coordinating tooth cycling post-hatching.
Collapse
Affiliation(s)
- Theresa M Grieco
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Barnett GJ, Barnett IJ, Wilson SR, Smith PC. Comparison of 6 Injectable Anesthetic Regimens and Isoflurane in Gray Short-tailed Opossums ( Monodelphis domestica). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:544-549. [PMID: 28903826 PMCID: PMC5605179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/21/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Gray short-tailed opossums are used in a wide variety of research in the areas of developmental biology, oncology, immunology, and comparative biology. Despite many frequent experimental manipulations of these animals under anesthesia, few studies to date have characterized the effects of anesthesia in this species. Our aim was to identify safe and effective injectable anesthetic combinations using ketamine and xylazine or ketamine and dexmedetomidine at doses of 40 mg/kg to 100 mg/kg for ketamine, 5 mg/kg to 10 mg/kg for xylazine, and 0.05 mg/kg to 0.1 mg/kg for dexmedetomidine. Effects of the proposed regimens ranged from light sedation to surgical anesthesia, but only 100 mg/kg ketamine + 0.1 mg/kg dexmedetomidine induced surgical anesthesia in all opossums, with a mean duration of 25.4 min. The 2 lowest doses of ketamine and xylazine (40 mg/kg ketamine + 5 mg/kg xylazine and 40 mg/kg ketamine + 10 mg/kg xylazine) achieved sedation to light anesthesia in all animals but did not produce a surgical plane of anesthesia in any animal. All regimens that induced a surgical plane of anesthesia caused bradycardia and bradypnea, and 75 mg/kg ketamine + 10 mg/kg xylazine and 100 mg/kg ketamine + 0.1 mg/kg dexmedetomidine caused the greatest decreases in SpO2. Except for one opossum that died of unknown causes, all animals remained healthy and apparently free of anesthetic complications. Among all treatments, isoflurane delivered by a precision vaporizer provided the most consistent and reliable anesthesia; therefore, we recommend inhalant anesthesia over the injectable combinations used in this study.
Collapse
Affiliation(s)
- Grace J Barnett
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut;,
| | - Ian J Barnett
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Steven R Wilson
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peter C Smith
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev 2017; 45:124-131. [DOI: 10.1016/j.gde.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
|
14
|
Grieco TM, Hlusko LJ. Insight from Frogs: Sonic Hedgehog Gene Expression and a Re-evaluation of the Vertebrate Odontogenic Band. Anat Rec (Hoboken) 2016; 299:1099-109. [DOI: 10.1002/ar.23378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Theresa M. Grieco
- Department of Oral Health Sciences; Life Sciences Institute, University of British Columbia; Vancouver British Columbia Canada
| | - Leslea J. Hlusko
- Department of Integrative Biology; University of California Berkeley; Berkeley California
| |
Collapse
|
15
|
Shen W, Wang Y, Liu Y, Liu H, Zhao H, Zhang G, Snead ML, Han D, Feng H. Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis. PLoS One 2016; 11:e0154884. [PMID: 27144394 PMCID: PMC4856323 DOI: 10.1371/journal.pone.0154884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022] Open
Abstract
Recent studies have demonstrated that ectodysplasin-A (EDA) mutations are associated with non-syndromic tooth agenesis. Indeed, we were the first to report three novel EDA mutations (A259E, R289C and R334H) in sporadic non-syndromic tooth agenesis. We studied the mechanism linking EDA mutations and non-syndromic tooth agenesis in human embryonic kidney 293T cells and mouse ameloblast-derived LS8 cells transfected with mutant isoforms of EDA. The receptor binding capability of the mutant EDA1 protein was impaired in comparison to wild-type EDA1. Although the non-syndromic tooth agenesis-causing EDA1 mutants possessed residual binding capability, the transcriptional activation of the receptor's downstream target, nuclear factor κB (NF-κB), was compromised. We also analyzed the changes of selected genes in other signaling pathways, such as WNT and BMP, after EDA mutation. We found that non-syndromic tooth agenesis-causing EDA1 mutant proteins upregulate BMP4 (bone morphogenetic protein 4) mRNA expression and downregulate WNT10A and WNT10B (wingless-type MMTV integration site family member 10A and 10B) mRNA expression. Our results indicated that non-syndromic tooth agenesis causing EDA mutations (A259E, R289C and R334H) were loss-of-function, and suggested that EDA may regulate the expression of WNT10A, WNT10B and BMP4 via NF-κB during tooth development. The results from our study may help to understand the molecular mechanism linking specific EDA mutations with non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
- Department of Prosthodontics, School and Hospital of Stomatology of Hebei Medical University, Hebei, 050017, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Human Disease Genomics Center, Peking University, Beijing, 100191, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, Hebei, 050017, China
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, 90033, United States of America
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- * E-mail:
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
16
|
Abramyan J, Richman JM. Recent insights into the morphological diversity in the amniote primary and secondary palates. Dev Dyn 2015; 244:1457-68. [PMID: 26293818 PMCID: PMC4715671 DOI: 10.1002/dvdy.24338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
The assembly of the upper jaw is a pivotal moment in the embryonic development of amniotes. The upper jaw forms from the fusion of the maxillary, medial nasal, and lateral nasal prominences, resulting in an intact upper lip/beak and nasal cavities; together called the primary palate. This process of fusion requires a balance of proper facial prominence shape and positioning to avoid craniofacial clefting, whilst still accommodating the vast phenotypic diversity of adult amniotes. As such, variation in craniofacial ontogeny is not tolerated beyond certain bounds. For clarity, we discuss primary palatogenesis of amniotes into in two categories, according to whether the nasal and oral cavities remain connected throughout ontogeny or not. The transient separation of these cavities occurs in mammals and crocodilians, while remaining connected in birds, turtles and squamates. In the latter group, the craniofacial prominences fuse around a persistent choanal groove that connects the nasal and oral cavities. Subsequently, all lineages except for turtles, develop a secondary palate that ultimately completely or partially separates oral and nasal cavities. Here, we review the shared, early developmental events and highlight the points at which development diverges in both primary and secondary palate formation.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver BC, CANADA
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver BC, CANADA
| |
Collapse
|
17
|
Dick DG, Maxwell EE. Ontogenetic Tooth Reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): Negative Allometry, Changes in Growth Rate, and Early Senescence of the Dental Lamina. PLoS One 2015; 10:e0141904. [PMID: 26579712 PMCID: PMC4651570 DOI: 10.1371/journal.pone.0141904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction.
Collapse
Affiliation(s)
- Daniel G. Dick
- Department of Paleontology, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
- Department of Geoscience, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- * E-mail:
| | - Erin E. Maxwell
- Department of Paleontology, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Anthwal N, Peters H, Tucker AS. Species-specific modifications of mandible shape reveal independent mechanisms for growth and initiation of the coronoid. EvoDevo 2015; 6:35. [PMID: 26568815 PMCID: PMC4644282 DOI: 10.1186/s13227-015-0030-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/10/2023] Open
Abstract
Background The variation in mandibular morphology of mammals reflects specialisations for different diets. Omnivorous and carnivorous mammals posses large mandibular coronoid processes, while herbivorous mammals have proportionally smaller or absent coronoids. This is correlated with the relative size of the temporalis muscle that forms an attachment to the coronoid process. The role of this muscle attachment in the development of the variation of the coronoid is unclear. Results By comparative developmental biology and mouse knockout studies, we demonstrate here that the initiation and growth of the coronoid are two independent processes, with initiation being intrinsic to the ossifying bone and growth dependent upon the extrinsic effect of muscle attachment. A necessary component of the intrinsic patterning is identified as the paired domain transcription factor Pax9. We also demonstrate that Sox9 plays a role independent of chondrogenesis in the growth of the coronoid process in response to muscle interaction. Conclusions The mandibular coronoid process is initiated by intrinsic factors, but later growth is dependent on extrinsic signals from the muscle. These extrinsic influences are hypothesised to be the basis of the variation in coronoid length seen across the mammalian lineage.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, SE1 9RT UK
| | - Heiko Peters
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, SE1 9RT UK
| |
Collapse
|