1
|
Hanada T, Yaguchi H, Fujiwara K, Hayashi Y, Nalepa CA, Maekawa K. Differential Expression of Hormone-Related Genes in the Heads of Adult and Nymphal Woodroaches (Cryptocercus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:182-197. [PMID: 39959923 DOI: 10.1002/jez.b.23290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/26/2024] [Accepted: 01/29/2025] [Indexed: 05/03/2025]
Abstract
Termites are eusocial cockroaches, but the crucial distinctions in gene expression during the evolution of eusociality remain unclear. One reason for the lack of this information is that comparative transcriptome analysis of termites with their sister group, the cockroach genus Cryptocercus, has not been conducted. We identified genes associated with three vital hormones (juvenile hormone [JH], 20-hydoroxyecdysone [20E], and insulin) from the genome sequence of Cryptocercus punctulatus and conducted RNA-seq analysis using the heads of female/male adults and nymphs to elucidate their expression levels. The comprehensive gene expression analysis revealed a multitude of genes exhibiting differences in expression between developmental stages rather than between sexes. Subsequently, we compared the differences in expression patterns of each hormone-related gene by combining the results of a previous RNA-seq study conducted on the heads of castes (reproductives, workers, and soldiers) in the termite Reticulitermes speratus. The results indicated that genes with expression differences among castes in R. speratus, particularly those related to JH and 20E, were significantly more abundant compared to genes with expression differences between adults and nymphs in C. punctulatus. While no significant difference was observed in the number of genes within the insulin signaling pathway, a trend of homologs highly expressed in adult woodroaches but not in adult termites was observed, and the expression patterns of positive and negative regulators in the pathway differed significantly between adults and nymphs. The differences in the expression patterns between Cryptocercus and termites are believed to reflect variations in hormone levels and signaling activities between adults and juveniles, the latter encompassing workers and soldiers in the case of termites.
Collapse
Affiliation(s)
- Takumi Hanada
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hajime Yaguchi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Kokuto Fujiwara
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | - Christine A Nalepa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
2
|
Yaguchi H, Matsushita M, Maekawa K. Protein-rich trophallactic contents transferred from reproductives are crucial for termite soldier differentiation in Zootermopsis nevadensis. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104797. [PMID: 40154942 DOI: 10.1016/j.jinsphys.2025.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Polyphenic castes exist for colony success in social animals. A primer pheromone has been suggested as a well-known regulator of caste development, but the basis of chemical communication has remained elusive over the last few decades. In termites, a long-standing hypothesis is that reproductive-secreted juvenile hormone (JH) plays a role as a primer pheromone involved in soldier differentiation. Here, we tested whether exogenous JH is necessary to induce differentiation of soldiers in the dampwood termite Zootermopsis nevadensis. The unique characteristic of this termite is that soldier-destined individuals can be monitored during their ontogeny under natural conditions. Furthermore, oral-anal trophallactic interactions with reproductives are required for soldier differentiation. First, knockdown of JH biosynthetic genes using RNA interference (RNAi) resulted in the reduction of soldier formation but did not affect the frequency of trophallactic interaction from reproductives to RNAi-treated individuals. Next, we compared the effect of parental replacement on soldier differentiation. Old-age reproductives had fewer stimulus effects on the differentiation of soldier-destined individuals compared to young-age reproductives. This difference in stimulus effects was derived from the protein levels within the digestive fluids of the king, but not those of the queen. Consequently, there is little or no possibility that JH itself plays a role as a primer pheromone. Alternatively, we propose that protein-rich nutrients in trophallactic fluids from reproductives are sufficient to induce high JH levels in larvae required for soldier differentiation.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan; Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Makoto Matsushita
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| |
Collapse
|
3
|
Erezyilmaz D. The genetic determination of alternate stages in polyphenic insects. Evol Dev 2024; 26:e12485. [PMID: 38867484 DOI: 10.1111/ede.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors broad-complex (br) and Ecdysone inducible protein 93 (E93), respectively. A probable larval determinant, chronologically inappropriate metamorphosis (chinmo), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of chinmo, br, and E93 underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how chinmo, br, and E93 expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about chinmo, br, and E93 function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.
Collapse
Affiliation(s)
- Deniz Erezyilmaz
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behavior, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Oguchi K, Miura T. Body part-specific development in termite caste differentiation: crosstalk between hormonal actions and developmental toolkit genes. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101183. [PMID: 38428818 DOI: 10.1016/j.cois.2024.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. During caste differentiation in termites, body parts and caste-specific morphologies are modified during postembryonic development under endocrine controls such as juvenile hormone (JH) and ecdysone. In addition to endocrine factors, developmental toolkit genes such as Hox- and appendage-patterning genes also contribute to the caste-specific body part modifications. These toolkits are thought to provide spatial information for specific morphogenesis. During social evolution, the complex crosstalks between physiological and developmental mechanisms should be established, leading to the sophisticated caste systems. This article reviews recent studies on these mechanisms underlying the termite caste differentiation and addresses implications for the evolution of caste systems in termites.
Collapse
Affiliation(s)
- Kohei Oguchi
- Misaki Marine Biological Station, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, The University of Tokyo, Miura, Kanagawa 238-0225, Japan.
| |
Collapse
|
5
|
Lin S, Elsner D, Ams L, Korb J, Rosengaus R. A genetic toolkit underlying the queen phenotype in termites with totipotent workers. Sci Rep 2024; 14:2214. [PMID: 38278833 PMCID: PMC10817970 DOI: 10.1038/s41598-024-51772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Social insect castes (e.g., queens, workers) are prime examples of phenotypic plasticity (i.e., different phenotypes arising from the same genotype). Yet, the mechanisms that give rise to highly fertile, long-lived queens versus non-reproducing, short-lived workers are not well understood. Recently, a module of co-expressed genes has been identified that characterizes queens compared to workers of the termite Cryptotermes secundus (Kalotermitidae): the Queen Central Module (QCM). We tested whether the QCM is shared in termite species, in which queens gradually develop via early larval and late larval instars, the latter functioning as totipotent workers (linear development). Similar as in C. secundus, gene expression profiles revealed an enrichment of QCM genes in Zootermopsis angusticollis queens, a species from another termite family (Archotermopsidae). The expression of these QCM genes became gradually enriched during development from early larval instars via workers to queens. Thus, our results support the hypothesis of a conserved genetic toolkit that characterizes termite queens with gradual linear development. Our data also imply a strong caste-specific tissue specificity with the QCM signal being restricted to head-prothorax tissues in termite queens. This tissue-specific expression of key aging-related genes might have facilitated the evolution of a long lifespan in termite queens.
Collapse
Affiliation(s)
- Silu Lin
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Leon Ams
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, 79104, Freiburg, Germany.
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, NT, 0909, Australia.
| | - Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
7
|
Maekawa K, Hayashi Y, Lo N. Termite sociogenomics: evolution and regulation of caste-specific expressed genes. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100880. [PMID: 35123120 DOI: 10.1016/j.cois.2022.100880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Termite genomes have been sequenced in at least five species from four different families. Genome-based transcriptome analyses have identified large numbers of protein-coding genes with caste-specific expression patterns. These genes include those involved in caste-specific morphologies and roles, for example high fecundity and longevity in reproductives. Some caste-specific expressed genes belong to multi-gene families, and their genetic architecture and expression profiles indicate they have evolved via tandem gene duplication. Candidate regulatory mechanisms of caste-specific expression include epigenetic regulation (e.g. histone modification and non-coding RNA) and diversification of transcription factors and cis-regulatory elements. We review current knowledge in the area of termite sociogenomics, focussing on the evolution and regulation of caste-specific expressed genes, and discuss future research directions.
Collapse
Affiliation(s)
- Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Hiyoshi, Yokohama 223-8521, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| |
Collapse
|
8
|
Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: Gene duplication facilitates social evolution. Proc Natl Acad Sci U S A 2022; 119:2110361119. [PMID: 35042774 PMCID: PMC8785959 DOI: 10.1073/pnas.2110361119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Gene duplication is a major source of evolutionary innovation and is associated with the increases in biological complexity and adaptive radiation. Termites are model social organisms characterized by a sophisticated caste system. We analyzed the genome of the Japanese subterranean termite, an ecologically and economically important insect acting as a destructive pest. The analyses revealed the significance of gene duplication in social evolution. Gene duplication associated with caste-biased gene expression was prevalent in the termite genome. Many of the duplicated genes were related to social functions, such as chemical communication, social immunity, and defense, and they were often expressed in caste-specific organs. We propose that gene duplication facilitates social evolution through regulatory diversification leading to caste-biased expression and functional specialization. Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus. Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage–specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.
Collapse
|
9
|
Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, Feldmeyer B, Foitzik S, Heinze J, Libbrecht R, Lin S, Majoe M, Monroy Kuhn JM, Nehring V, Negroni MA, Paxton RJ, Séguret AC, Stoldt M, Flatt T. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190728. [PMID: 33678016 PMCID: PMC7938167 DOI: 10.1098/rstb.2019.0728] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
| | - Denise Aumer
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Daniel Elsner
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Silu Lin
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Megha Majoe
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - José Manuel Monroy Kuhn
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
| | - Matteo A. Negroni
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice C. Séguret
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - the So-Long consortium
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, D-79104 Freiburg (Breisgau), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Canberra, Acton 2601, Australia
- Developmental Zoology, Molecular Ecology Research Group, Hoher Weg 4, D-06099 Halle (Saale), Germany
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Georg-Voigt-Straße 14-16, D-60325 Frankfurt, Germany
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, D-55128 Mainz, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Campanini EB, Pedrino M, Martins LA, Athaide Neta OS, Carazzolle MF, Ciancaglini I, Malavazi I, Costa-Leonardo AM, de Melo Freire CC, Nunes FMF, da Cunha AF. Expression profiles of neotropical termites reveal microbiota-associated, caste-biased genes and biotechnological targets. INSECT MOLECULAR BIOLOGY 2021; 30:152-164. [PMID: 33247845 DOI: 10.1111/imb.12684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Termites are well recognized by their complex development trajectories, involving dynamic differentiation process between non-reproductive castes, workers and soldiers. These insects are associated with endosymbiotic microorganisms, which help in lignocellulose digestion and nitrogen metabolism. Aiming to identify genes harbouring biotechnological potential, we analyzed workers and soldiers RNA-Seq data of three neotropical termites: Heterotermes tenuis (Isoptera: Rhinotermitidae), Velocitermes heteropterus (Isoptera: Termitidae) and Cornitermes cumulans (Isoptera: Termitidae). We observed differences in the microbiota associated with each termite family, and found protists' genes in both Termitidae species. We found an opposite pattern of caste-biased gene expression between H. tenuis and the termitids studied. Moreover, the two termitids are considerably different concerning the number of differentially expressed genes (DEGs). Functional annotation indicated considerable differences in caste-biased gene content between V. heteropterus and C. cumulans, even though they share similar diet and biological niche. Among the most DEGs, we highlighted those involved in caste differentiation and cellulose digestion, which are attractive targets for studying more efficient technologies for termite control, biomass digestion and other biotechnological applications.
Collapse
Affiliation(s)
- E B Campanini
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - M Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - L A Martins
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - O S Athaide Neta
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - M F Carazzolle
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - I Ciancaglini
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - I Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - A M Costa-Leonardo
- Laboratório de Cupins, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), campus de Rio Claro, Rio Claro, Brazil
| | - C C de Melo Freire
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - F M F Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - A F da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
11
|
Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 2021; 4:384. [PMID: 33753888 PMCID: PMC7985136 DOI: 10.1038/s42003-021-01892-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.
Collapse
Affiliation(s)
- Silu Lin
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Jana Werle
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Judith Korb
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Korb J, Greiner C, Foget M, Geiler A. How Can Termites Achieve Their Unparalleled Postembryonic Developmental Plasticity? A Test for the Role of Intermolt-Specific High Juvenile Hormone Titers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Termites are “social cockroaches” and amongst the most phenotypically plastic insects. The different castes (i.e., two types of reproductives, workers, and soldiers) within termite societies are all encoded by a single genome and present the result of differential postembryonic development. Besides the default progressive development into winged sexuals of solitary hemimetabolous insects, termites have two postembryonic, non-terminal molts (stationary and regressive; i.e., molts associated, respectively, with no change or reduction of size/morphological differentiation) which allow them to retain workers, and two terminal developmental types to become soldiers and replacement reproductives. Despite this unique plasticity, especially the mechanisms underlying the non-terminal development are poorly understood. In 1982, Nijhout and Wheeler proposed a model how this diversity might have evolved. They proposed that varying juvenile hormone (JH) titers at the start, mid-phase, and end of each intermolt period account for the developmental diversity. We tested this rarely addressed model in the lower termite Cryptotermes secundus using phase-specific pharmacological manipulations of JH titers. Our results partially support the Nijhout and Wheeler model. These data are supplemented with gene expression studies of JH-related genes that characterize different postembryonic developmental trajectories. Our study provides new insights into the evolution of the unique postembryonic developmental plasticity of termites that constitutes the foundation of their social life.
Collapse
|
13
|
Shpigler HY, Herb B, Drnevich J, Band M, Robinson GE, Bloch G. Juvenile hormone regulates brain-reproduction tradeoff in bumble bees but not in honey bees. Horm Behav 2020; 126:104844. [PMID: 32860832 DOI: 10.1016/j.yhbeh.2020.104844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Gonadotropic hormones coordinate processes in diverse tissues regulating animal reproductive physiology and behavior. Juvenile hormone (JH) is the ancient and most common gonadotropin in insects, but not in advanced eusocial honey bees and some ants. To start probing the evolutionary basis of this change, we combined endocrine manipulations, transcriptomics, and behavioral analyses to study JH regulated processes in a bumble bee showing a relatively simple level of eusociality. We found that in worker fat body, more JH-regulated genes were up- rather than down-regulated, and enriched for metabolic and biosynthetic pathways. This transcriptomic pattern is consistent with earlier evidence that JH is the major gonadotropin in bumble bees. In the brain, more JH-regulated genes were down- rather than up-regulated and enriched for protein turnover pathways. Brain ribosomal protein gene expression shows a similar trend of downregulation in dominant workers, which naturally have high JH titers. In other species, similar downregulation of protein turnover is found in aging brains or under stress, associated with compromised long-term memory and health. These findings suggest a previously unknown gonadotropin-mediated tradeoff. Analysis of published data reveals no such downregulation of protein turnover pathways in the brain of honey bee workers, which exhibit more complex eusociality and in which JH is not a gonadotropin but rather regulates division of labor. These results suggest that the evolution of complex eusociality in honey bees was associated with modifications in hormonal signalling supporting extended and extremely high fertility while reducing the ancient costs of high gonadotropin titers to the brain.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Brian Herb
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- High-Performance Biological Computing Group, Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, USA
| | - Mark Band
- Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, USA; Institute of Evolution, University of Haifa, Israel
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Entomology Department, The University of Illinois at Urbana-Champaign, USA; Neuroscience Program, The University of Illinois at Urbana-Champaign, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Methoprene-Induced Genes in Workers of Formosan Subterranean Termites ( Coptotermes formosanus Shiraki). INSECTS 2020; 11:insects11020071. [PMID: 31973177 PMCID: PMC7074503 DOI: 10.3390/insects11020071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.
Collapse
|
16
|
Santos CG, Humann FC, Hartfelder K. Juvenile hormone signaling in insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:43-48. [PMID: 31109672 DOI: 10.1016/j.cois.2018.07.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/15/2018] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) plays a crucial role in insect reproduction, but its molecular mode of action only became clear within the last decade. We here review recent findings revealing the intricate crosstalk between JH and ecdysone signaling with nutrient sensing pathways in Drosophila melanogaster, Aedes aegypti, Tribolium castaneum and Locusta migratoria. The finding for a critical role of ecdysis triggering hormone (ETH) in both molting and ooogenesis now also highlights the importance of an integrated view of development and reproduction. Furthermore, insights from non-model insects, especially so social Hymenoptera and termites, where JH function gradually becomes decoupled from reproduction and plays a role in division of labor, emphasize the need to consider life cycle and life history strategies when studying insect reproductive physiology.
Collapse
Affiliation(s)
- Carolina Gonçalves Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Gössinger E. Chemistry of the Secondary Metabolites of Termites. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:1-384. [PMID: 31637529 DOI: 10.1007/978-3-030-12858-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.
Collapse
Affiliation(s)
- Edda Gössinger
- Institute of Chemistry, University of Vienna, Vienna, Austria.
- , Mistelbach, Austria.
| |
Collapse
|
18
|
Bornberg-Bauer E, Harrison MC, Jongepier E. The first cockroach genome and its significance for understanding development and the evolution of insect eusociality. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:251-253. [PMID: 30168666 DOI: 10.1002/jez.b.22826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|