1
|
Platt DM, Blout Zawatsky CL, Christensen KD, Green RC, Hajek C, Hickingbotham MR, Hutchinson AM, LeBlanc JL, Zoltick ES, Jamal L. Primary Care Providers' Experiences With an Active Elective Genetic Testing Program. HEALTH EDUCATION & BEHAVIOR 2025; 52:28-37. [PMID: 39081055 DOI: 10.1177/10901981241266849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Elective genetic testing (EGT) programs that provide pharmacogenomic information to guide medication management and screen for medically actionable disease predispositions are emerging in a number of health systems. Primary care providers (PCPs) are at the forefront of test initiation, patient education, and management of EGT results. However, little research has examined the experiences of PCPs in health systems offering clinical EGT. We conducted semi-structured interviews, a sub-study of the larger mixed-methods Imagenetics Initiative, with 16 PCPs at a health system in the Midwest with a clinical EGT program supported by provider education, automated clinical decision support, and enhanced access to genetic specialists. The purpose of these interviews was to understand perceptions about the benefits and barriers of implementing EGT in clinical practice. Thematic analysis indicated that EGT is conceptualized similar to traditional diagnostic services. PCPs were generally favorable toward EGT; however, targeted education did not dispel misconceptions about the goals, results, and limitations of EGT. Most PCPs endorsed the potential utility of EGT. Pharmacogenomic profiling was seen as having more immediate impact for patients than screening for monogenic disease risks. PCPs reported that they weighed discussions about EGT against time limitations and the need to prioritize patients' existing health concerns. Regardless of their education levels and familiarity with genetics, PCPs desired additional educational resources and greater access to genetic specialists. Our study provides unique insight into PCPs' experiences with clinical EGT in health systems that have adopted EGT and highlights the practical challenges and potential opportunities of EGT integration.
Collapse
Affiliation(s)
- Dylan M Platt
- Sanford Health Imagenetics, Sioux Falls, SD, USA
- Augustana University, Sioux Falls, SD, USA
| | | | - Kurt D Christensen
- Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert C Green
- Ariadne Labs, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine Hajek
- Sanford Health Imagenetics, Sioux Falls, SD, USA
- Helix OpCo LLC, San Mateo, CA, USA
| | | | | | | | | | - Leila Jamal
- National Cancer Institute, Bethesda, MD, USA
- National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
2
|
Cannon A, McMillan O, Kelley WV, East KM, Cochran ME, Miskell EL, Moss IP, Garner-Duckworth S, Redden DT, Might M, Barsh GS, Korf BR. Medical and psychosocial outcomes of state-funded population genomic screening. Clin Genet 2023; 104:434-442. [PMID: 37340305 PMCID: PMC11299714 DOI: 10.1111/cge.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
As the uptake of population screening expands, assessment of medical and psychosocial outcomes is needed. Through the Alabama Genomic Health Initiative (AGHI), a state-funded genomic research program, individuals received screening for pathogenic or likely pathogenic variants in 59 actionable genes via genotyping. Of the 3874 eligible participants that received screening results, 858 (22%) responded to an outcomes survey. The most commonly reported motivation for seeking testing through AGHI was contribution to genetic research (64%). Participants with positive results reported a higher median number of planned actions (median = 5) due to AGHI results as compared to negative results (median = 3). Interviews were conducted with survey participants with positive screening results. As determined by certified genetic counselors, 50% of interviewees took appropriate medical action based on their result. There were no negative or harmful actions taken. These findings indicate population genomic screening of an unselected adult population is feasible, is not harmful, and may have positive outcomes on participants now and in the future; however, further research is needed in order to assess clinical utility.
Collapse
Affiliation(s)
- Ashley Cannon
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olivia McMillan
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kelly M East
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Edrika L. Miskell
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Irene P Moss
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Might
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Bruce R Korf
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Blout Zawatsky CL, Bick D, Bier L, Funke B, Lebo M, Lewis KL, Orlova E, Qian E, Ryan L, Schwartz MLB, Soper ER. Elective genomic testing: Practice resource of the National Society of Genetic Counselors. J Genet Couns 2023; 32:281-299. [PMID: 36597794 DOI: 10.1002/jgc4.1654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/05/2023]
Abstract
Genetic counseling for patients who are pursuing genetic testing in the absence of a medical indication, referred to as elective genomic testing (EGT), is becoming more common. This type of testing has the potential to detect genetic conditions before there is a significant health impact permitting earlier management and/or treatment. Pre- and post-test counseling for EGT is similar to indication-based genetic testing. Both require a complete family and medical history when ordering a test or interpreting a result. However, EGT counseling has some special considerations including greater uncertainties around penetrance and clinical utility and a lack of published guidelines. While certain considerations in the selection of a high-quality genetic testing laboratory are universal, there are some considerations that are unique to the selection of a laboratory performing EGT. This practice resource intends to provide guidance for genetic counselors and other healthcare providers caring for adults seeking pre- or post-test counseling for EGT. Genetic counselors and other genetics trained healthcare providers are the ideal medical professionals to supply accurate information to individuals seeking counseling about EGT enabling them to make informed decisions about testing and follow-up.
Collapse
Affiliation(s)
- Carrie L Blout Zawatsky
- Genomes2People, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Ariadne Labs, Boston, Massachusetts, USA.,The MGH Institute of Health Professions, Boston, Massachusetts, USA
| | | | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Matthew Lebo
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Cambridge, Massachusetts, USA.,Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, Massachusetts, USA
| | - Katie L Lewis
- Center for Precision Health Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Qian
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | | | - Marci L B Schwartz
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emily R Soper
- The Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Genome screening, reporting, and genetic counseling for healthy populations. Hum Genet 2023; 142:181-192. [PMID: 36331656 PMCID: PMC9638226 DOI: 10.1007/s00439-022-02480-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Rapid advancements of genome sequencing (GS) technologies have enhanced our understanding of the relationship between genes and human disease. To incorporate genomic information into the practice of medicine, new processes for the analysis, reporting, and communication of GS data are needed. Blood samples were collected from adults with a PCR-confirmed SARS-CoV-2 (COVID-19) diagnosis (target N = 1500). GS was performed. Data were filtered and analyzed using custom pipelines and gene panels. We developed unique patient-facing materials, including an online intake survey, group counseling presentation, and consultation letters in addition to a comprehensive GS report. The final report includes results generated from GS data: (1) monogenic disease risks; (2) carrier status; (3) pharmacogenomic variants; (4) polygenic risk scores for common conditions; (5) HLA genotype; (6) genetic ancestry; (7) blood group; and, (8) COVID-19 viral lineage. Participants complete pre-test genetic counseling and confirm preferences for secondary findings before receiving results. Counseling and referrals are initiated for clinically significant findings. We developed a genetic counseling, reporting, and return of results framework that integrates GS information across multiple areas of human health, presenting possibilities for the clinical application of comprehensive GS data in healthy individuals.
Collapse
|
5
|
Miura MS, Suckiel SA, Naik H, Soper ER, Abul-Husn NS. Elective genetic testing: Genetics professionals' perspectives and practices. J Genet Couns 2022. [PMID: 36575824 DOI: 10.1002/jgc4.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
Elective genetic testing (EGT) to identify disease risk in individuals who may or may not meet clinical criteria for testing is increasingly being offered in clinical practice. However, little is known about how EGT is currently implemented and how genetics professionals perceive this type of testing. We conducted a mixed-methods survey study to evaluate genetics professionals' perspectives and attitudes about EGT and describe the current landscape of EGT practices in the United States (U.S.) and Canada. Six clinical geneticists and 131 genetic counselors responded to the online survey, among whom 44% reported offering EGT in their practice. Over 84% of survey respondents agreed that EGT may improve health outcomes and understanding of genotype-phenotype correlations, and 85% agreed that potential risks include result misinterpretation and contribution to economic health disparities. Though most respondents felt comfortable providing pretest (77%) and post-test (86%) counseling for EGT, lack of provider resources (such as time and personnel) and prioritization of diagnostic testing were cited most frequently in free-text responses as reasons for not offering EGT. Of those offering EGT, 88% reported positive overall experiences. Qualitative analysis of open-ended questions identified benefits of EGT as expanding access to genetic testing, providing potential health benefits, and providing psychological benefits for patients. Disadvantages included prohibitive costs, limited clinical utility, and strain on resources. Overall, we found that genetics providers perceive both potential benefits and harms of EGT and that those offering this testing had generally positive experiences, although ethical reservations and practical limitations exist.
Collapse
Affiliation(s)
- Madison S Miura
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sabrina A Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily R Soper
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Noura S Abul-Husn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Shen EC, Srinivasan S, Passero LE, Allen CG, Dixon M, Foss K, Halliburton B, Milko LV, Smit AK, Carlson R, Roberts MC. Barriers and Facilitators for Population Genetic Screening in Healthy Populations: A Systematic Review. Front Genet 2022; 13:865384. [PMID: 35860476 PMCID: PMC9289280 DOI: 10.3389/fgene.2022.865384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Studies suggest that 1-3% of the general population in the United States unknowingly carry a genetic risk factor for a common hereditary disease. Population genetic screening is the process of offering otherwise healthy patients in the general population testing for genomic variants that predispose them to diseases that are clinically actionable, meaning that they can be prevented or mitigated if they are detected early. Population genetic screening may significantly reduce morbidity and mortality from these diseases by informing risk-specific prevention or treatment strategies and facilitating appropriate participation in early detection. To better understand current barriers, facilitators, perceptions, and outcomes related to the implementation of population genetic screening, we conducted a systematic review and searched PubMed, Embase, and Scopus for articles published from date of database inception to May 2020. We included articles that 1) detailed the perspectives of participants in population genetic screening programs and 2) described the barriers, facilitators, perceptions, and outcomes related to population genetic screening programs among patients, healthcare providers, and the public. We excluded articles that 1) focused on direct-to-consumer or risk-based genetic testing and 2) were published before January 2000. Thirty articles met these criteria. Barriers and facilitators to population genetic screening were organized by the Social Ecological Model and further categorized by themes. We found that research in population genetic screening has focused on stakeholder attitudes with all included studies designed to elucidate individuals' perceptions. Additionally, inadequate knowledge and perceived limited clinical utility presented a barrier for healthcare provider uptake. There were very few studies that conducted long-term follow-up and evaluation of population genetic screening. Our findings suggest that these and other factors, such as prescreen counseling and education, may play a role in the adoption and implementation of population genetic screening. Future studies to investigate macro-level determinants, strategies to increase provider buy-in and knowledge, delivery models for prescreen counseling, and long-term outcomes of population genetic screening are needed for the effective design and implementation of such programs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020198198.
Collapse
Affiliation(s)
- Emily C Shen
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Swetha Srinivasan
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Lauren E Passero
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Caitlin G Allen
- Department of Public Health Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Madison Dixon
- Department of Behavioral, Social, and Health Education Science, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kimberly Foss
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Brianna Halliburton
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura V Milko
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Amelia K Smit
- The Daffodil Centre, University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW, Australia.,Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Carlson
- Health Sciences Library, University of North Carolina, Chapel Hill, NC, United States
| | - Megan C Roberts
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Grant P, Langlois S, Lynd LD, Austin JC, Elliott AM. Out-of-pocket and private pay in clinical genetic testing: A scoping review. Clin Genet 2021; 100:504-521. [PMID: 34080181 DOI: 10.1111/cge.14006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Full coverage of the cost of clinical genetic testing is not always available through public or private insurance programs, or a public healthcare system. Consequently, some patients may be faced with the decision of whether to finance testing out-of-pocket (OOP), meet OOP expenses required by their insurer, or not proceed with testing. A scoping review was conducted to identify literature associated with patient OOP and private pay in clinical genetic testing. Seven databases (EMBASE, MEDLINE, CINAHL, PsychINFO, PAIS, the Cochrane Database of Systematic Reviews, and the JBI Evidence-Based Practice database) were searched, resulting in 83 unique publications included in the review. The presented evidence includes a descriptive analysis, followed by a narrative account of the extracted data. Results were divided into four groups according to clinical indication: (1) hereditary breast and ovarian cancer, (2) other hereditary cancers, (3) prenatal testing, (4) other clinical indications. The majority of studies focused on hereditary cancer and prenatal genetic testing. Overall trends indicated that OOP costs have fallen and payer coverage has improved, but OOP expenses continue to present a barrier to patients who do not qualify for full coverage.
Collapse
Affiliation(s)
- Peter Grant
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Sylvie Langlois
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation (CORE), Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jehannine C Austin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (BC), Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- BC Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Alison M Elliott
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (BC), Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Cochran M, East K, Greve V, Kelly M, Kelley W, Moore T, Myers RM, Odom K, Schroeder MC, Bick D. A study of elective genome sequencing and pharmacogenetic testing in an unselected population. Mol Genet Genomic Med 2021; 9:e1766. [PMID: 34313030 PMCID: PMC8457704 DOI: 10.1002/mgg3.1766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genome sequencing (GS) of individuals without a medical indication, known as elective GS, is now available at a number of centers around the United States. Here we report the results of elective GS and pharmacogenetic panel testing in 52 individuals at a private genomics clinic in Alabama. METHODS Individuals seeking elective genomic testing and pharmacogenetic testing were recruited through a private genomics clinic in Huntsville, AL. Individuals underwent clinical genome sequencing with a separate pharmacogenetic testing panel. RESULTS Six participants (11.5%) had pathogenic or likely pathogenic variants that may explain one or more aspects of their medical history. Ten participants (19%) had variants that altered the risk of disease in the future, including two individuals with clonal hematopoiesis of indeterminate potential. Forty-four participants (85%) were carriers of a recessive or X-linked disorder. All individuals with pharmacogenetic testing had variants that affected current and/or future medications. CONCLUSION Our study highlights the importance of collecting detailed phenotype information to interpret results in elective GS.
Collapse
Affiliation(s)
- Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Kelly East
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Veronica Greve
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Melissa Kelly
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Whitley Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Troy Moore
- Kailos Genetics, Huntsville, Alabama, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Katherine Odom
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
9
|
Schwartz MLB, Buchanan AH, Hallquist MLG, Haggerty CM, Sturm AC. Genetic counseling for patients with positive genomic screening results: Considerations for when the genetic test comes first. J Genet Couns 2021; 30:634-644. [PMID: 33786929 DOI: 10.1002/jgc4.1386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023]
Abstract
Emerging genetic testing delivery models have enabled individuals to receive testing without a medical indication. This article will highlight key considerations for patient care in the setting of adult patients with positive results for monogenic disease identified through genomic screening. Suggestions for how to adapt genetic counseling to a genomic screening population will encompass topics such as phenotyping, risk assessments, and the use of existing guidelines and resources. Case examples will demonstrate principles of genotype-first patient care.
Collapse
Affiliation(s)
| | | | | | - Christopher M Haggerty
- The Heart Institute, Geisinger, Danville, PA, USA.,Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Amy C Sturm
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
| |
Collapse
|