1
|
Smith HS, Zettler B, Genetti CA, Hickingbotham MR, Coleman TF, Lebo M, Nagy A, Zouk H, Mahanta L, Christensen KD, Pereira S, Shah ND, Gold NB, Walmsley S, Edwards S, Homayouni R, Krasan GP, Hakonarson H, Horowitz CR, Gelb BD, Korf BR, McGuire AL, Holm IA, Green RC. The BabySeq Project: A clinical trial of genome sequencing in a diverse cohort of infants. Am J Hum Genet 2024; 111:2094-2106. [PMID: 39288765 PMCID: PMC11480845 DOI: 10.1016/j.ajhg.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Efforts to implement and evaluate genome sequencing (GS) as a screening tool for newborns and infants are expanding worldwide. The first iteration of the BabySeq Project (2015-2019), a randomized controlled trial of newborn sequencing, produced novel evidence on medical, behavioral, and economic outcomes. The second iteration of BabySeq, which began participant recruitment in January 2023, examines GS outcomes in a larger, more diverse cohort of more than 500 infants up to one year of age recruited from pediatric clinics at several sites across the United States. The trial aims for families who self-identify as Black/African American or Hispanic/Latino to make up more than 50% of final enrollment, and key aspects of the trial design were co-developed with a community advisory board. All enrolled families receive genetic counseling and a family history report. Half of enrolled infants are randomized to receive GS with comprehensive interpretation of pathogenic and likely pathogenic variants in more than 4,300 genes associated with childhood-onset and actionable adult-onset conditions, as well as larger-scale chromosomal copy number variants classified as pathogenic or likely pathogenic. GS result reports include variants associated with disease (Mendelian disease risks) and carrier status of autosomal-recessive and X-linked disorders. Investigators evaluate the utility and impacts of implementing a GS screening program in a diverse cohort of infants using medical record review and longitudinal parent surveys. In this perspective, we describe the rationale for the second iteration of the BabySeq Project, the outcomes being assessed, and the key decisions collaboratively made by the study team and community advisory board.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Department of Population Medicine, Precision Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; Center for Bioethics, Harvard Medical School, Boston, MA 02215, USA
| | - Bethany Zettler
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Ariadne Labs, Boston, MA 02215, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Madison R Hickingbotham
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Tanner F Coleman
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Matthew Lebo
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anna Nagy
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, MA 02139, USA
| | - Hana Zouk
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lisa Mahanta
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, MA 02139, USA
| | - Kurt D Christensen
- Department of Population Medicine, Precision Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stacey Pereira
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nidhi D Shah
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Dartmouth Health Children's, Lebanon, NH 03756, USA
| | - Nina B Gold
- Massachusetts General Hospital for Children, Division of Medical Genetics and Metabolism, Boston, MA 02114, USA; Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA
| | - Sheyenne Walmsley
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Ariadne Labs, Boston, MA 02215, USA
| | | | - Ramin Homayouni
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Graham P Krasan
- Department of Pediatrics, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Joseph Stokes Jr. Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics & Genomic Sciences Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce R Korf
- Department of Genetics, UAB Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Amy L McGuire
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA.
| | - Robert C Green
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Ariadne Labs, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
3
|
Cornelis C, Tibben A, Brilstra E, Bolt I, van Summeren M, Knoers N, Bredenoord AL. Hope, but never expect? Comparing parents' pre- and post-disclosure attitudes toward return of results from diagnostic exome sequencing for their child. Mol Genet Genomic Med 2024; 12:e2341. [PMID: 38366804 PMCID: PMC10958177 DOI: 10.1002/mgg3.2341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Counseling for whole-exome sequencing (WES) could benefit from aligning parents' pre- and post-disclosure attitudes. A few studies have qualitatively compared parents' pre- and post-disclosure attitudes toward receiving WES results for their child in a diagnostic setting. This study explored these attitudes in the context of children with a developmental delay. METHODS Semi-structured interviews were conducted with parents (n = 27) of 16 children undergoing diagnostic WES in trio-analysis, both before and after receiving results. RESULTS Three key insights emerged. First, the distinction between hoping and expecting was relevant for shaping parents' experiences with receiving results related to the primary indication. Second, parents of young children whose development of autonomous capacities was uncertain sometimes found themselves in a situation resembling a Catch-22 when confronted with decisions about unsolicited findings (UFs): an important reason for consenting to WES was to gain a better picture of how the child might develop, but in order to make responsible choices about UFs, some ideas of their child's development is needed. Third, default opt-ins and opt-outs helped parents fathom new kinds of considerations for accepting or declining UFs in different categories, thereby aiding decision-making. CONCLUSION Results from this study are relevant for counseling and policy development.
Collapse
Affiliation(s)
- Candice Cornelis
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Medical Humanities, Julius CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aad Tibben
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Eva Brilstra
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ineke Bolt
- Department of Medical Ethics, Philosophy and History of MedicineErasmus Medical CenterRotterdamThe Netherlands
| | - Marieke van Summeren
- Department of General PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine Knoers
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of GeneticsUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Erasmus School of PhilosophyErasmus University RotterdamRotterdamThe Netherlands
| |
Collapse
|
4
|
Abstract
Rare diseases are a leading cause of infant mortality and lifelong disability. To improve outcomes, timely diagnosis and effective treatments are needed. Genomic sequencing has transformed the traditional diagnostic process, providing rapid, accurate and cost-effective genetic diagnoses to many. Incorporating genomic sequencing into newborn screening programmes at the population scale holds the promise of substantially expanding the early detection of treatable rare diseases, with stored genomic data potentially benefitting health over a lifetime and supporting further research. As several large-scale newborn genomic screening projects launch internationally, we review the challenges and opportunities presented, particularly the need to generate evidence of benefit and to address the ethical, legal and psychosocial issues that genomic newborn screening raises.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics, Melbourne, Victoria, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Richard H Scott
- Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
- Genomics England, London, UK
| |
Collapse
|
5
|
Ulph F, Bennett R. Psychological and Ethical Challenges of Introducing Whole Genome Sequencing into Routine Newborn Screening: Lessons Learned from Existing Newborn Screening. New Bioeth 2023; 29:52-74. [PMID: 36181705 DOI: 10.1080/20502877.2022.2124582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
As a psychologist and an ethicist, we have explored empirically newborn screening consent and communication processes. In this paper we consider the impact on families if newborn screening uses whole genome sequencing. We frame this within the World Health Organization's definition of health and contend that proposals to use whole genome sequencing in newborn screening take into account the ethical, practical and psychological impact of such screening. We argue that the important psychological processes occurring in the neonatal phase necessitate a clear justification that providing risk information at this stage provides a health benefit. We illustrate how research on current newborn screening can inform whole genome sequencing debates, whilst highlighting important gaps. Obtaining explicit, voluntary, and sufficiently informed consent for newborn screening is challenging, however we stress that such consent is ethically and legally appropriate and psychologically and practically important. We conclude by outling how this might be done.
Collapse
Affiliation(s)
- Fiona Ulph
- Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca Bennett
- Centre for Social Ethics and Policy, Department of Law, School of Social Sciences, Faculty of Humanities, University of Manchester, Manchester, UK
| |
Collapse
|