1
|
Krishnamachary B, Mironchik Y, Jacob D, Goggins E, Kakkad S, Ofori F, Dore-Savard L, Bharti SK, Wildes F, Penet MF, Black ME, Bhujwalla ZM. Hypoxia theranostics of a human prostate cancer xenograft and the resulting effects on the tumor microenvironment. Neoplasia 2020; 22:679-688. [PMID: 33142234 PMCID: PMC7586064 DOI: 10.1016/j.neo.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022] Open
Abstract
Developed a hypoxia theranostic imaging strategy to eliminate hypoxic cells. Hypoxic cell elimination resulted in fewer cancer associated fibroblasts (CAFs) Collagen 1 fiber patterns were altered with hypoxic cell elimination. cDNA nanoparticles with HRE driven prodrug enzyme expression can target hypoxia.
Hypoxia is frequently observed in human prostate cancer, and is associated with chemoresistance, radioresistance, metastasis, and castrate-resistance. Our purpose in these studies was to perform hypoxia theranostics by combining in vivo hypoxia imaging and hypoxic cancer cell targeting in a human prostate cancer xenograft. This was achieved by engineering PC3 human prostate cancer cells to express luciferase as well as a prodrug enzyme, yeast cytosine deaminase, under control of hypoxic response elements (HREs). Cancer cells display an adaptive response to hypoxia through the activation of several genes mediated by the binding of hypoxia inducible factors (HIFs) to HRE in the promoter region of target gene that results in their increased transcription. HIFs promote key steps in tumorigenesis, including angiogenesis, metabolism, proliferation, metastasis, and differentiation. HRE-driven luciferase expression allowed us to detect hypoxia in vivo to time the administration of the nontoxic prodrug 5-fluorocytosine that was converted by yeast cytosine deaminase, expressed under HRE regulation, to the chemotherapy agent 5-fluorouracil to target hypoxic cells. Conversion of 5-fluorocytosine to 5-fluorouracil was detected in vivo by 19F magnetic resonance spectroscopy. Morphological and immunohistochemical staining and molecular analyses were performed to characterize tumor microenvironment changes in cancer-associated fibroblasts, cell viability, collagen 1 fiber patterns, and HIF-1α. These studies expand our understanding of the effects of eliminating hypoxic cancer cells on the tumor microenvironment and in reducing stromal cell populations such as cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Desmond Jacob
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eibhlin Goggins
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Francis Ofori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Louis Dore-Savard
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Santosh Kumar Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Margaret E Black
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD; Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
2
|
Eskandani M, Vandghanooni S, Barar J, Nazemiyeh H, Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J Biol Macromol 2017; 99:46-62. [DOI: 10.1016/j.ijbiomac.2016.10.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
|
3
|
Lin M, Huang J, Jiang X, Zhang J, Yu H, Ye J, Zhang D. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH. Sci Rep 2016; 6:33524. [PMID: 27642033 PMCID: PMC5027595 DOI: 10.1038/srep33524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi (131)I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/(131)I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.
Collapse
Affiliation(s)
- Mei Lin
- Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, 225300, China
- Medical School of Southeast University, Nanjing, 210009, China
| | - Junxing Huang
- Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, 225300, China
| | - Xingmao Jiang
- Key Laboratory of Advanced Catalytic Material and Technology, Changzhou University, Changzhou, 213000, China
| | - Jia Zhang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Hong Yu
- Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, 225300, China
| | - Jun Ye
- Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, 225300, China
| | - Dongsheng Zhang
- Medical School of Southeast University, Nanjing, 210009, China
- Southeast University, Jiangsu Key Laboratory For Biomaterials and Devices, Nanjing, 210009, China
| |
Collapse
|
4
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
5
|
Penet MF, Krishnamachary B, Chen Z, Jin J, Bhujwalla ZM. Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv Cancer Res 2015; 124:235-56. [PMID: 25287691 DOI: 10.1016/b978-0-12-411638-2.00007-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morbidity and mortality from cancer and their associated conditions and treatments continue to extract a heavy social and economic global burden despite the transformative advances in science and technology in the twenty-first century. In fact, cancer incidence and mortality are expected to reach pandemic proportions by 2025, and costs of managing cancer will escalate to trillions of dollars. The inability to establish effective cancer treatments arises from the complexity of conditions that exist within tumors, the plasticity and adaptability of cancer cells coupled with their ability to escape immune surveillance, and the co-opted stromal cells and microenvironment that assist cancer cells in survival. Stromal cells, although destroyed together with cancer cells, have an ever-replenishing source that can assist in resurrecting tumors from any residual cancer cells that may survive treatment. The tumor microenvironment landscape is a continually changing landscape, with spatial and temporal heterogeneities that impact and influence cancer treatment outcome. Importantly, the changing landscape of the tumor microenvironment can be exploited for precision medicine and theranostics. Molecular and functional imaging can play important roles in shaping and selecting treatments to match this landscape. Our purpose in this review is to examine the roles of molecular and functional imaging, within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhihang Chen
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiefu Jin
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Hsiao HT, Xing L, Deng X, Sun X, Ling CC, Li GC. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncol Rep 2014; 32:723-9. [PMID: 24912473 PMCID: PMC4091884 DOI: 10.3892/or.2014.3238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
The hypoxic microenvironment, an important feature of human solid tumors but absent in normal tissue, may provide an opportunity for cancer-specific gene therapy. The purpose of the present study was to investigate whether hypoxia-driven triple suicide gene TK/CD/UPRT expression enhances cytotoxicity to ganciclovir (GCV) and 5-fluorocytosine (5-FC), and sensitizes human colorectal cancer to radiation in vitro and in vivo. Stable transfectant of human colorectal HCT8 cells was established which expressed hypoxia-inducible vectors (HRE-TK/eGFP and HRE-CD/UPRT/mDsRed). Hypoxia-induced expression/function of TK, CD and UPRT was verified by western blot analysis, flow cytometry, fluorescent microscopy and cytotoxicity assay of GCV and 5-FC. Significant radiosensitization effects were detected after 5-FC and GCV treatments under hypoxic conditions. In the tumor xenografts, the distribution of TK/eGFP and CD/UPRT/mDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC and GCV in mice in combination with local irradiation resulted in tumor regression, as compared with prodrug or radiation treatments alone. Our data suggest that the hypoxia-inducible TK/GCV+CDUPRT/5-FC triple suicide gene therapy may have the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.
Collapse
Affiliation(s)
- Hung Tsung Hsiao
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xuelong Deng
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaorong Sun
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - C Clifton Ling
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Gloria C Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Sun X, Xing L, Deng X, Hsiao HT, Manami A, Koutcher JA, Clifton Ling C, Li GC. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo. Radiother Oncol 2012; 105:57-63. [PMID: 22938726 DOI: 10.1016/j.radonc.2012.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/22/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. MATERIALS AND METHODS Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. RESULTS Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. CONCLUSIONS Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.
Collapse
Affiliation(s)
- Xiaorong Sun
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The exquisite specificity of proteins is a key feature driving their application to anticancer therapies. The therapeutic potential of another fundamental property of proteins, their ability to be regulated by molecular cues in their environment, is unknown. Here, we describe a synthetic biology strategy for designing protein therapeutics that autonomously activate a therapeutic function in response to a specific cancer marker of choice. We demonstrate this approach by creating a prodrug-activating enzyme that selectively kills human cancer cells that accumulate the marker hypoxia-inducible factor 1α. This property arises primarily through increased cellular accumulation of the enzyme in the presence of the marker. Our strategy offers a platform for the development of inherently selective protein therapeutics for cancer and other diseases.
Collapse
|
9
|
Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM. Exploiting the tumor microenvironment for theranostic imaging. NMR IN BIOMEDICINE 2011; 24:636-47. [PMID: 21793072 PMCID: PMC3146040 DOI: 10.1002/nbm.1664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 05/12/2023]
Abstract
The integration of chemistry and molecular biology with imaging is providing some of the most exciting opportunities in the treatment of cancer. The field of theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. Using this information, theranostic agents can be shaped for personalized treatment to target specific compartments, such as the tumor microenvironment (TME), whilst minimizing damage to normal tissue. These theranostic agents can also be used to target multiple pathways or networks by incorporating multiple small interfering RNAs (siRNAs) within a single agent. A decade ago genetic alterations were the primary focus in cancer research. Now it is apparent that the tumor physiological microenvironment, interactions between cancer cells and stromal cells, such as endothelial cells, fibroblasts and macrophages, the extracellular matrix (ECM), and a host of secreted factors and cytokines, influence progression to metastatic disease, aggressiveness and the response of the disease to treatment. In this review, we outline some of the characteristics of the TME, describe the theranostic agents currently available to target the TME and discuss the unique opportunities the TME provides for the design of novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Ioannis Stasinopoulos
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhihang Chen
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, Rm 208C, Traylor Bldg., 720, Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Hermesse J, Biver S, Jansen N, Lenaerts E, Nickers P. Dosimetric Comparison of High-Dose-Rate Brachytherapy and Intensity-Modulated Radiation Therapy as a Boost to the Prostate. Int J Radiat Oncol Biol Phys 2010; 76:269-76. [DOI: 10.1016/j.ijrobp.2009.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
|