1
|
Influence of Liposomes’ and Lipoplexes’ Physicochemical Characteristics on Their Uptake Rate and Mechanisms by the Placenta. Int J Mol Sci 2022; 23:ijms23116299. [PMID: 35682978 PMCID: PMC9181748 DOI: 10.3390/ijms23116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pregnant women are still considered as drug orphans. Developing new medications for pregnancy complications is an urgent need. Nanomedicines seem to be a promising approach to control the biodistribution of drugs to ensure both the mother’s and the fetus’ safety. Understanding the interaction between nanoparticles and the placental barrier is a key factor to the success of the development of nanomedicines for pregnant women. In this study, we evaluated the behavior of fluorescent PEGylated liposomes and lipoplexes in human placental tissue using in vitro and ex vivo models, BeWo cell culture and suspended villous placental explants, respectively. Fluorescent based analytical tools such as Fluorescence activated cells sorting (FACS), confocal microscopy and HPLC coupled to fluorescence detection were used to assess liposomes penetration and their endocytosis mechanisms in the placenta. First, no influence of the PEGylation density was observed on the cellular internalization of liposomal formulations using both models. The comparison between neutral and cationic liposomes exhibits a significant higher internalization of the cationic formulation compared to the neutral ones. In addition, the HPLC quantification of the fluorescent liposomes in human villous explants demonstrated an increase of cationic liposomes uptake with increasing incubation concentrations. Similar uptake of cationic liposomes and lipoplexes, containing the same cationic lipid, the DMAPAP but with an overall neutral surface charge, was observed and evidenced the higher effect of composition than charge surface on trophoblast penetration. Moreover, both cationic liposomes and lipoplexes exhibited an endocytosis mechanism of internalization via pathways implicating dynamin. These data highlight the key role of the liposome’s lipid composition and the possibility to modulate their internalization in the placenta by adjusting their design.
Collapse
|
2
|
Martin B, Seguin J, Annereau M, Fleury T, Lai-Kuen R, Neri G, Lam A, Bally M, Mignet N, Corvis Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci Rep 2020; 10:18059. [PMID: 33093456 PMCID: PMC7581827 DOI: 10.1038/s41598-020-74809-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle technology in cancer chemotherapy is a promising approach to enhance active ingredient pharmacology and pharmacodynamics. Indeed, drug nanoparticles display various assets such as extended blood lifespan, high drug loading and reduced cytotoxicity leading to better drug compliance. In this context, organic nanocrystal suspensions for pharmaceutical use have been developed in the past ten years. Nanocrystals offer new possibilities by combining the nanoformulation features with the properties of solid dispersed therapeutic ingredients including (i) high loading of the active ingredient, (ii) its bioavailability improvement, and (iii) reduced drug systemic cytotoxicity. However, surprisingly, no antitumoral drug has been marketed as a nanocrystal suspension until now. Etoposide, which is largely used as an anti-cancerous agent against testicular, ovarian, small cell lung, colon and breast cancer in its liquid dosage form, has been selected to develop injectable nanocrystal suspensions designed to be transferred to the clinic. The aim of the present work is to provide optimized formulations for nanostructured etoposide solutions and validate by means of in vitro and in vivo evaluations the efficiency of this multiphase system. Indeed, the etoposide formulated as a nanosuspension by a bottom-up approach showed higher blood life span, reduced tumor growth and higher tolerance in a murine carcinoma cancer model. The results obtained are promising for future clinical evaluation of these etoposide nanosuspensions.
Collapse
Affiliation(s)
- Brice Martin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.,Department of Neurological Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Johanne Seguin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Maxime Annereau
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - Thomas Fleury
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - René Lai-Kuen
- Université de Paris, CNRS, Inserm, Cellular and Molecular Imaging Technology Platform, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Giovanni Neri
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Anita Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Marcel Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
3
|
Bessodes M, Dhotel H, Mignet N. Lipids for Nucleic Acid Delivery: Cationic or Neutral Lipoplexes, Synthesis, and Particle Formation. Methods Mol Biol 2019; 1943:123-139. [PMID: 30838613 DOI: 10.1007/978-1-4939-9092-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipidic vesicles have been extensively studied for their capacity to condensate and deliver nucleic acids to the cells. Many different amphiphilic lipidic structures have been proposed each of them bringing some advances in nonviral gene transfection. The ionic or neutral nature of the lipids induces tremendous differences in the behavior of the corresponding liposomes, from the complexation of nucleic acid to the delivery to the cell. An efficient delivery in vitro or in vivo also depends closely on the structure of the lipids and very often, efficient liposomes in vitro have been found useless for in vivo administration.We describe in this chapter the chemical synthesis of two different lipids, one cationic and the other essentially neutral, and the formulation to obtain liposomes and DNA-liposome complexes. The different ways and tricks for the formulation of the two different structures are especially highlighted.
Collapse
Affiliation(s)
- Michel Bessodes
- Unité de Technologies Chimiques et Biologiques pour la Santé, INSERM, U 1022, Paris, France
- CNRS, UMR 8258, Paris, France
- Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Chimie ParisTech, PSL Research University, Paris, France
| | - Helene Dhotel
- Unité de Technologies Chimiques et Biologiques pour la Santé, INSERM, U 1022, Paris, France
- CNRS, UMR 8258, Paris, France
- Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Chimie ParisTech, PSL Research University, Paris, France
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé, INSERM, U 1022, Paris, France.
- CNRS, UMR 8258, Paris, France.
- Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.
- Chimie ParisTech, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Liposomes as Gene Delivery Vectors for Human Placental Cells. Molecules 2018; 23:molecules23051085. [PMID: 29734663 PMCID: PMC6099662 DOI: 10.3390/molecules23051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine as a therapeutic approach for pregnancy-related diseases could offer improved treatments for the mother while avoiding side effects for the fetus. In this study, we evaluated the potential of liposomes as carriers for small interfering RNAs to placental cells. Three neutral formulations carrying rhodamine-labelled siRNAs were evaluated on an in vitro model, i.e., human primary villous cytotrophoblasts. siRNA internalization rate from lipoplexes were compared to the one in the presence of the lipofectamine reagent and assessed by confocal microscopy. Results showed cellular internalization of nucleic acid with all three formulations, based on two cationic lipids, either DMAPAP or CSL-3. Moreover, incubation with DMAPAP+AA provided a rate of labelled cells as high as with lipofectamine (53 ± 15% and 44 ± 12%, respectively) while being more biocompatible. The proportion of cells which internalized siRNA were similar when using DMAPAP/DDSTU (16 ± 5%) and CSL-3 (22 ± 5%). This work highlights that liposomes could be a promising approach for gene therapy dedicated to pregnant patients.
Collapse
|
5
|
Manta S, Renault G, Delalande A, Couture O, Lagoutte I, Seguin J, Lager F, Houzé P, Midoux P, Bessodes M, Scherman D, Bureau MF, Marie C, Pichon C, Mignet N. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound-mediated transgene expression in liver. J Control Release 2017; 262:170-181. [PMID: 28710005 DOI: 10.1016/j.jconrel.2017.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 11/15/2022]
Abstract
Despite the increasing number of clinical trials in gene therapy, no ideal methods still allow non-viral gene transfer in deep tissues such as the liver. We were interested in ultrasound (US)-mediated gene delivery to provide long term liver expression. For this purpose, new positively charged microbubbles were designed and complexed with pFAR4, a highly efficient small length miniplasmid DNA devoid of antibiotic resistance sequence. Sonoporation parameters, such as insonation time, acoustic pressure and duration of plasmid injection were controlled under ultrasound imaging guidance. The optimization of these various parameters was performed by bioluminescence optical imaging of luciferase reporter gene expression in the liver. Mice were injected with 50μg pFAR4-LUC either alone, or complexed with positively charged microbubbles, or co-injected with neutral MicroMarker™ microbubbles, followed by low ultrasound energy application to the liver. Injection of the pFAR4 encoding luciferase alone led to a transient transgene expression that lasted only for two days. The significant luciferase signal obtained with neutral microbubbles decreased over 2days and reached a plateau with a level around 1 log above the signal obtained with pFAR4 alone. With the newly designed positively charged microbubbles, we obtained a much stronger bioluminescence signal which increased over 2days. The 12-fold difference (p<0.05) between MicroMarker™ and our positively charged microbubbles was maintained over a period of 6months. Noteworthy, the positively charged microbubbles led to an improvement of 180-fold (p<0.001) as regard to free pDNA using unfocused ultrasound performed at clinically tolerated ultrasound amplitude. Transient liver damage was observed when using the cationic microbubble-pFAR4 complexes and the optimized sonoporation parameters. Immunohistochemistry analyses were performed to determine the nature of cells transfected. The pFAR4 miniplasmid complexed with cationic microbubbles allowed to transfect mostly hepatocytes compared to its co-injection with MicroMarker™ which transfected more preferentially endothelial cells.
Collapse
Affiliation(s)
- Simona Manta
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Gilles Renault
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Anthony Delalande
- Centre de Biophysique Moléculaire and Université d'Orléans, UPR 4301, F-45071 Orléans, France
| | - Olivier Couture
- Institut Langevin - Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR7587, INSERM U979, 1, rue Jussieu, 75238 Paris, Cedex 05, France
| | - Isabelle Lagoutte
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Johanne Seguin
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Franck Lager
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Pascal Houzé
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire and Université d'Orléans, UPR 4301, F-45071 Orléans, France
| | - Michel Bessodes
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Daniel Scherman
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Michel-Francis Bureau
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Corinne Marie
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire and Université d'Orléans, UPR 4301, F-45071 Orléans, France.
| | - Nathalie Mignet
- CNRS, UTCBS UMR 8258, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), F-75005 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France
| |
Collapse
|
6
|
Seguin J, Dhotel H, Kai-Luen R, Bessodes M, Mignet N. Fine tuning of mixed ionic and hydrogen bond interactions for plasmid delivery using lipoplexes. Eur J Pharm Biopharm 2014; 90:63-9. [PMID: 25448076 DOI: 10.1016/j.ejpb.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/25/2023]
Abstract
Non viral gene transfection has been mostly reached via cationic polymer and lipid, required for DNA complexation and cell internalisation. However, cationic charges often induce cytotoxicity and limit the efficacy of the lipoplexes in vivo due to their fast elimination from the blood stream. Few years ago, we had developed noncationic lipid interacting with DNA via hydrogen bond interactions. To take advantage of both the internalisation efficacy of cationic complexes and the higher DNA release efficacy of non cationic lipids, we chose to mix both ionic and hydrogen bond interactions within one lipoplex. The idea behind this strategy would be to reduce the overall charge while maintaining a high level of transfection. Four mixed formulations of cationic lipid and thiourea lipid were prepared. We found that decreasing ionic interactions and increasing hydrogen bond interactions improved cationic lipoplexes properties. Indeed, we showed that replacement of net positive charges by hydrogen bond interactions with DNA phosphates led to efficient lipoplexes for in vitro DNA transfection at lower cationic charge content, which consequently reduced lipoplex cytotoxicity.
Collapse
Affiliation(s)
- Johanne Seguin
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - Hélène Dhotel
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - René Kai-Luen
- Cell and Molecular Imaging Platform, CRP2 - UMS 3612 CNRS - US25 Inserm-IRD - Université Paris Descartes Paris Sorbonne Cité, Faculty of Pharmacy, 75270 Paris Cedex 06, France
| | - Michel Bessodes
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - Nathalie Mignet
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France.
| |
Collapse
|
7
|
Li Y, Tian H, Ding J, Dong X, Chen J, Chen X. Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polym Chem 2014. [DOI: 10.1039/c3py01781h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
García Fernández JM, Benito JM, Ortiz Mellet C. Cyclodextrin-scaffolded glycotransporters for gene delivery. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-10-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional drugs consist of a formulation of a bioactive species and a carrier, the former accounting for most of the sophistication of the design. In the case of biomolecular drugs, however, the role of the carrier becomes decisive in enabling the load to reach its target to carry out its designed therapeutic function. Thus, the clinical success of gene therapy, where the active principles are nucleic acids, critically depends on the use of efficient and safe delivery systems. Carbohydrates have proven particularly useful in this regard. Glycocoating, similarly to poly(ethylene)glycol (PEG)-coating (pegylation), can stabilize colloidal aggregates by improving solvation and preventing nonspecific interactions, for example, with serum proteins. Moreover, glycoconjugates can drive specific recognition and receptor-mediated internalization in target cells. Actually, the inherent flexibility of carbohydrate and glycoconjugate chemistry has greatly contributed to enlarging the range of functional materials that can be rationally conceived for gene delivery. Herein, this is illustrated with selected examples that focus on controlling the architectural parameters of the vectors to make them suitable for structure–activity relationship (SAR) and optimization studies. The members of the cyclomaltooligosaccharide (cyclodextrin, CD) family will be the central actors of the story.
Collapse
|
9
|
Abstract
Lipidic vesicles have been extensively studied for their capacity to condensate and deliver nucleic acids to the cells. Many different amphiphilic lipidic structures have been proposed, each of them bringing some advances in nonviral gene transfection. The ionic or neutral nature of the lipids induces tremendous differences in the behavior of the corresponding liposomes, from the complexation of nucleic acid to the delivery to the cell. An efficient delivery in vitro or in vivo also depends closely on the structure of the lipids and very often, efficient liposomes in vitro have been found useless for in vivo administration.We wish to describe in this chapter the chemical synthesis of two different lipids, one cationic and the other essentially neutral, and the formulation to obtain liposomes and DNA/liposome complexes. The different ways and tricks for the formulation of the two different structures are especially highlighted.
Collapse
Affiliation(s)
- Michel Bessodes
- Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, France
| | | |
Collapse
|
10
|
Li C, Yang YW, Liang ZX, Wu GL, Gao H. Post-modification of poly(glycidyl methacrylate)s with alkyl amine and isothiocyanate for effective pDNA delivery. Polym Chem 2013. [DOI: 10.1039/c3py00573a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Symens N, Méndez-Ardoy A, Díaz-Moscoso A, Sánchez-Fernández E, Remaut K, Demeester J, Fernández JMG, De Smedt SC, Rejman J. Efficient Transfection of Hepatocytes Mediated by mRNA Complexed to Galactosylated Cyclodextrins. Bioconjug Chem 2012; 23:1276-89. [PMID: 22668084 DOI: 10.1021/bc3001003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nathalie Symens
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Alejandro Méndez-Ardoy
- Departamento de Química
Organica, Universidad de Sevilla, c/ Profesor Garcia Gonzalez 1, E-41012 Sevilla, Spain
| | - Alejandro Díaz-Moscoso
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Elena Sánchez-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Katrien Remaut
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joseph Demeester
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Stefaan C. De Smedt
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joanna Rejman
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Bienvenu C, Martínez Á, Jiménez Blanco JL, Di Giorgio C, Vierling P, Ortiz Mellet C, Defaye J, García Fernández JM. Polycationic amphiphilic cyclodextrins as gene vectors: effect of the macrocyclic ring size on the DNA complexing and delivery properties. Org Biomol Chem 2012; 10:5570-81. [PMID: 22733369 DOI: 10.1039/c2ob25786f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Céline Bienvenu
- Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis - CNRS, 28, Avenue de Valrose, F-06100 Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Berchel M, Le Gall T, Couthon-Gourvès H, Haelters JP, Montier T, Midoux P, Lehn P, Jaffrès PA. Lipophosphonate/lipophosphoramidates: A family of synthetic vectors efficient for gene delivery. Biochimie 2012; 94:33-41. [DOI: 10.1016/j.biochi.2011.07.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/20/2011] [Indexed: 01/27/2023]
|
14
|
Allain V, Bourgaux C, Couvreur P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res 2011; 40:1891-903. [PMID: 22075995 PMCID: PMC3300006 DOI: 10.1093/nar/gkr681] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This short review aims at presenting some recent illustrative examples of spontaneous nucleolipids self-assembly. High-resolution structural investigations reveal the diversity and complexity of assemblies formed by these bioinspired amphiphiles, resulting from the interplay between aggregation of the lipid chains and base–base interactions. Nucleolipids supramolecular assemblies are promising soft drug delivery systems, particularly for nucleic acids. Regarding prodrugs, squalenoylation is an innovative concept for improving efficacy and delivery of nucleosidic drugs.
Collapse
Affiliation(s)
- Vanessa Allain
- Laboratoire de Physicochimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université Paris-Sud 11, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
15
|
Lipothioureas as Lipids for Gene Transfection: A Review. Pharmaceuticals (Basel) 2011; 4:1381-1399. [PMID: 27721329 PMCID: PMC4060130 DOI: 10.3390/ph4101381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 01/30/2023] Open
Abstract
Non-viral gene therapy requires innovative strategies to achieve higher transfection efficacy. A few years ago, our group proposed bioinspired lipids whose interaction with DNA was not based on ionic interactions, but on hydrogen bonds. We thus developed lipids bearing a thiourea head which allowed an interaction with DNA phosphates through hydrogen bonds. After a proof of concept with a lipid bearing three thiourea functions, a molecular and cellular screening was performed by varying all parts of the lipids: the hydrophobic anchor, the spacer, the linker, and the thiourea head. Two lipothiourea-based structures were identified as highly efficient in vitro transfecting agents. The lipothioureas were shown to reduce non specific interactions with cell membranes and deliver their DNA content intracellularly more efficiently, as compared to cationic lipoplexes. These lipids could deliver siRNA efficiently and allowed specific cell targeting in vitro. In vivo, thiourea lipoplexes presented a longer retention time in the blood and less accumulation in the lungs after an intravenous injection in mice. They also induced luciferase gene expression in muscle and tumor after local administration in mice. Therefore, these novel lipoplexes represent an excellent alternative to cationic lipoplexes as transfecting agents. In this review we will focus on the structure activity studies that permitted the identification of the two most efficient thiourea lipids.
Collapse
|
16
|
Breton M, Berret JF, Bourgaux C, Kral T, Hof M, Pichon C, Bessodes M, Scherman D, Mignet N. Protonation of lipids impacts the supramolecular and biological properties of their self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12336-12345. [PMID: 21870814 DOI: 10.1021/la202439s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We assessed in this work how a chemical structure difference could influence a supramolecular organization and then its biological properties. In our case study, we considered two amphiphilic lipidic gene vectors. The chemical difference was situated on their hydrophilic part which was either a pure neutral thiourea head or a mixture of three thiourea function derivatives, thiourea, iminothiol, and charged iminothiol. This small difference was obtained thanks to the last chemical deprotection conditions of the polar head hydroxyl groups. Light, neutron, and X-ray scattering techniques have been used to investigate the spatial structure of the liposomes and lipoplexes formed by the lipids. The chemical structure difference impacts the supramolecular assemblies of the lipids and with DNA as shown by fluorescence correlation spectroscopy (FCS), X-ray, and neutron scattering. Hence the structures formed were found to be highly different in terms of liposomes to DNA ratio and size and polydispersity of the aggregates. Finally, the transfection and internalization results proved that the differences in the structure of the lipid aggregates fully affect the biological properties of the lipopolythiourea compounds. The lipid containing three functions is a better gene transfection agent than the lipid which only contains one thiourea moiety. As a conclusion, we showed that the conditions of the last chemical step can influence the lipidic supramolecular structure which in turn strongly impacts their biological properties.
Collapse
Affiliation(s)
- Marie Breton
- UMR 8151 CNRS, Unité de Pharmacologie Chimique et Génétique, Université Paris Descartes, Chimie-ParisTech, 4 avenue de l'observatoire, 75006 Paris, U640 Inserm, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Méndez-Ardoy A, Guilloteau N, Di Giorgio C, Vierling P, Santoyo-González F, Ortiz Mellet C, García Fernández JM. β-Cyclodextrin-Based Polycationic Amphiphilic “Click” Clusters: Effect of Structural Modifications in Their DNA Complexing and Delivery Properties. J Org Chem 2011; 76:5882-94. [DOI: 10.1021/jo2007785] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, E-41012 Sevilla, Spain
| | - Nicolas Guilloteau
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Christophe Di Giorgio
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Pierre Vierling
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Francisco Santoyo-González
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E-18071 Granada, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, E-41012 Sevilla, Spain
| | - José M. García Fernández
- Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, A2mérico Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|
18
|
Fraix A, Montier T, Carmoy N, Loizeau D, Burel-Deschamps L, Le Gall T, Giamarchi P, Couthon-Gourvès H, Haelters JP, Lehn P, Jaffrès PA. Cationic lipo-thiophosphoramidates for gene delivery: synthesis, physico-chemical characterization and gene transfection activity – comparison with lipo-phosphoramidates. Org Biomol Chem 2011; 9:2422-32. [DOI: 10.1039/c0ob00981d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Ortiz Mellet C, García Fernández JM, Benito JM. Cyclodextrin-based gene delivery systems. Chem Soc Rev 2010; 40:1586-608. [PMID: 21042619 DOI: 10.1039/c0cs00019a] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclodextrin (CD) history has been largely dominated by their unique ability to form inclusion complexes with guests fitting in their hydrophobic cavity. Chemical funcionalization was soon recognized as a powerful mean for improving CD applications in a wide range of fields, including drug delivery, sensing or enzyme mimicking. However, 100 years after their discovery, CDs are still perceived as novel nanoobjects of undeveloped potential. This critical review provides an overview of different strategies to promote interactions between CD conjugates and genetic material by fully exploiting the inside-outside/upper-lower face anisotropy of the CD nanometric platform. Covalent modification, self-assembling and supramolecular ligation can be put forward with the ultimate goal to build artificial viruses for programmed and efficient gene therapy (222 references).
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain.
| | | | | |
Collapse
|
20
|
Mignet N, Vandermeulen G, Pembouong G, Largeau C, Thompson B, Spanedda MV, Wasungu L, Rols MP, Bessodes M, Bureau MF, Préat V, Scherman D. Cationic and anionic lipoplexes inhibit gene transfection by electroporation in vivo. J Gene Med 2010; 12:491-500. [PMID: 20527042 DOI: 10.1002/jgm.1460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Nonviral gene therapy still suffers from low efficiency. Methods that would lead to higher gene expression level of longer duration would be a major advance in this field. Lipidic vectors and physical methods have been investigated separately, and both induced gene expression improvement. METHODS We sought to combine both chemical and physical methods. Cationic or anionic lipids can potentially destabilize the cell membrane and could consequently enhance gene delivery by a physical method such as electrotransfer. A plasmid model encoding luciferase was used, either free or associated with differently-charged lipoplexes before electrotransfer. RESULTS Electrotransfer alone strongly enhanced gene expression after intramuscular and intradermal injection of naked DNA. On the other hand, cationic and anionic lipoplex formulations decreased gene expression after electrotransfer, whereas poorly-charged thiourea-based complexes, brought no benefit. Pre-injection of the lipids, followed by administration of naked DNA, did not modified gene expression induced by electroporation in the skin. CONCLUSIONS The results obtained in the present study suggest that packing of DNA plasmid in lipoplexes strongly decreases the efficiency of gene electrotransfer, independently of the lipoplex charge. Non-aggregating complexes, such as poorly-charged thiourea-based complexes, should be preferred to increase DNA release.
Collapse
Affiliation(s)
- Nathalie Mignet
- Inserm U1022- CNRS UMR8151, Paristech, Unité de Pharmacologie Chimique et Génétique et d'Imagerie, Université Paris Descartes, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|