1
|
Dowaidar M. Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion 2024; 78:101906. [PMID: 38797356 DOI: 10.1016/j.mito.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cell-penetrating peptides (CPPs) are molecules that improve the cellular uptake of various molecular payloads that do not easily traverse the cellular membrane. CPPs can be found in pharmaceutical and medical products. The vast majority of cell-penetrating chemicals that are discussed in published research are peptide based. The paper also delves into the various applications of hybrid vectors. Because CPPs are able to carry cargo across the cellular membrane, they are a viable candidate for use as a suitable carrier for a wide variety of cargoes, such as siRNA, nanoparticles, and others. In which we discuss the CPPs, their classification, uptake mechanisms, hybrid vector systems, nanoparticles and their uptake mechanisms, etc. Further in this paper, we discuss CPPs conjugated to Nanoparticles, Combining CPPs with lipids and polymeric Nanoparticles in A Conjugated System, CPPs conjugated to nanoparticles for therapeutic purposes, and potential therapeutic uses of CPPs as delivery molecules. Also discussed the preclinical and clinical use of CPPS, intracellular trafficking of nanoparticles, and activatable and bioconjugated CPPs.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Miao L, Fraefel C, Sia KC, Newman JP, Mohamed-Bashir SA, Ng WH, Lam PYP. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy. Br J Cancer 2014; 110:94-106. [PMID: 24196790 PMCID: PMC3887293 DOI: 10.1038/bjc.2013.692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. METHODS Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. RESULTS The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. CONCLUSION YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/genetics
- Brain Neoplasms/therapy
- Brain Neoplasms/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Cycle/genetics
- Cell Line, Tumor
- Chlorocebus aethiops
- Female
- Glioma/genetics
- Glioma/therapy
- Glioma/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- Luciferases/genetics
- Mice
- Mice, Nude
- Mice, SCID
- Oncolytic Virotherapy/methods
- Regulatory Elements, Transcriptional
- Transcription, Genetic
- Transgenes
- Vero Cells
- Viral Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- L Miao
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - C Fraefel
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - K C Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - J P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - S A Mohamed-Bashir
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - W H Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - P Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
3
|
Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, Bonsi L, Di Luca D, Marchionni C, Alvisi G, Ripalti A. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS One 2013; 8:e71412. [PMID: 23940750 PMCID: PMC3734067 DOI: 10.1371/journal.pone.0071412] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
Fetal membranes (FM) derived mesenchymal stromal/stem cells (MSCs) are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), Varicella zoster virus (VZV), and Human Cytomegalovirus (HCMV), but not with Epstein-Barr virus (EBV), Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8) although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.
Collapse
Affiliation(s)
- Simone Avanzi
- Department of Oncology, Haematology and Laboratory Medicine, Operative Unit of Microbiology, A. O-U. di Bologna Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sung LY, Chen CL, Lin SY, Hwang SM, Lu CH, Li KC, Lan AS, Hu YC. Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study. Nucleic Acids Res 2013; 41:e139. [PMID: 23716635 PMCID: PMC3737544 DOI: 10.1093/nar/gkt442] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Baculovirus (BV) is a promising gene vector but mediates transient expression. To prolong the expression, we developed a binary system whereby the transgene in the substrate BV was excised by the recombinase (ΦC31o, Cre or FLPo) expressed by a second BV and recombined into smaller minicircle. The recombination efficiency was lower by ΦC31o (≈40–75%), but approached ≈90–95% by Cre and FLPo in various cell lines and stem cells [e.g. human adipose-derived stem cells (hASCs)]. Compared with FLPo, Cre exerted higher expression level and lower negative effects; thus, we incorporated additional cis-acting element [oriP/Epstein–Barr virus nuclear antigen 1 (EBNA1), scaffold/matrix attached region or human origin of replication (ori)] into the Cre-based BV system. In proliferating cells, only oriP/EBNA1 prolonged the transgene expression and maintained the episomal minicircles for 30 days without inadvertent integration, whereas BV genome was degraded in 10 days. When delivering bmp2 or vegf genes, the efficient recombination/minicircle formation prolonged and enhanced the growth factor expression in hASCs. The prolonged bone morphogenetic protein 2 expression ameliorated the osteogenesis of hASCs, a stem cell with poor osteogenesis potential. Altogether, this BV vector exploiting Cre-mediated recombination and oriP/EBNA1 conferred remarkably high recombination efficiency, which prolonged and enhanced the transgene expression in dividing and non-dividing cells, thereby broadening the applications of BV.
Collapse
Affiliation(s)
- Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yulyana Y, Endaya BB, Ng WH, Guo CM, Hui KM, Lam PYP, Ho IAW. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev 2013; 22:1870-82. [PMID: 23428290 DOI: 10.1089/scd.2012.0529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been used extensively in cancer therapy. However, more than half of glioblastoma multiforme are insensitive to the apoptotic effect of TRAIL. Improvement in therapeutic modalities that enhances the efficacy of TRAIL in glioma is much sought after. In this study, we combined the tumor selectivity of TRAIL and tumor-homing properties of mesenchymal stem cells (MSC) with gap junction (GJ) inhibitory effect of carbenoxolone (CBX) to target orthotopic glioma. MSC were engineered to express TRAIL (MSC-TRAIL) by incorporating the secretable trimeric form of TRAIL into a Herpes Simplex Virus (HSV) type I amplicon vector. Our results showed that combined treatment of MSC-TRAIL and CBX enhanced glioma cell death, especially in three primary human glioma isolates, of which two of those are marginally sensitive to TRAIL. CBX enhanced TRAIL-induced apoptosis through upregulation of death receptor 5, blockade of GJ intercellular communication, and downregulation of connexin 43. Dual arm therapy using TRAIL and CBX prolonged the survival of treated mice by ~27% when compared with the controls in an intracranial glioma model. The enhanced efficacy of TRAIL in combination with CBX coupled with the minimal cytotoxic nature of CBX suggested a favorable clinical usage of this treatment regimen.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
6
|
Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv 2013; 31:208-23. [DOI: 10.1016/j.biotechadv.2012.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/26/2012] [Accepted: 10/04/2012] [Indexed: 01/23/2023]
|
7
|
Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW, Huss R, Nelson PJ, Bruns CJ. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 2012; 21:2355-63. [PMID: 22530882 DOI: 10.1089/scd.2012.0060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host.
Collapse
Affiliation(s)
- Qi Bao
- Department of Surgery, University of Munich, Campus Großhadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sia KC, Huynh H, Chinnasamy N, Hui KM, Lam PYP. Suicidal gene therapy in the effective control of primary human hepatocellular carcinoma as monitored by noninvasive bioimaging. Gene Ther 2011; 19:532-42. [PMID: 21918545 DOI: 10.1038/gt.2011.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is usually refractory to the available treatments. For cancer gene therapy purposes, real-time imaging of therapeutic gene expression is of great importance because there are multiple factors that modulate the therapeutic gene expression in a complex tumor microenvironment. As a consequence, multiple doses of therapeutic viral vectors may be required for improved efficacy. In the present study, the luciferase reporter gene and the yeast cytosine deaminase (yCD) genes were bicistronically expressed using the foot-and-mouth disease virus 2A peptide under the regulation of the cytomegalovirus (CMV) promoter. The effectiveness of the yCD/5-FC (5-fluorocytosine) killing efficacy mediated by the herpes simplex virus type 1 (HSV-1) amplicon viral vector was shown using HCC and non-HCC cell lines in vitro. In addition, in vivo experiment also showed tumor regression of a primary HCC 26-1004 tumor xenograft in tumor expressing high levels of the yCD gene (as determined by noninvasive imaging) after intratumoral injection of 1.5 × 10(6) TU HGCX-L2C HSV-1 amplicon viral vector and 5-FC administration. The HSV-1 amplicon viral vector coupled with the yCD/5-FC prodrug activated suicide gene could potentially be of use in clinical gene therapy for HCC.
Collapse
Affiliation(s)
- K C Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | | | | | | | | |
Collapse
|