1
|
Zhao X, Yang Z, Zheng T, Zeng M, Lin X, Chen H, Zheng W, Peng S, Li S, Song T, Sun Y. The Impact of High lncRNA Expression on Clinicopathological Characteristics and Prognosis of Endometrial Cancer Patients: A Meta-Analysis. Cancer Med 2025; 14:e70755. [PMID: 40070309 PMCID: PMC11897610 DOI: 10.1002/cam4.70755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/09/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUNDS A growing number of systematic bioinformatics analyses were conducted to investigate the mechanism of interaction between long non-coding RNA (lncRNA) and endometrial carcinoma (EC) to predict the prognosis. However, there is no evidence-based evidence that abnormal lncRNA expression is strongly associated with the pathological characteristics and prognosis of EC patients. In this meta-analysis, we systematically evaluated the relationship between upregulated lncRNA expression levels and clinicopathological features, five-year survival rate, and progression-free survival (PFS). METHODS A systematic search was performed across seven reputable databases, namely the China National Knowledge Infrastructure, Wanfang, Wipu, PubMed, Web of Science, Cochrane Library, and Embase, encompassing the period from the inception of each database until November 27, 2022. Heterogeneity among the studies was assessed through the application of Cochran's Q and I2 statistics. All statistical analyses were conducted using Stata 14.0 software. RESULTS This study encompassed 30 clinical studies, involving a total of 2469 EC patients, and examined the expression of 24 lncRNAs, which were upregulated in EC samples. EC patients with higher expression of lncRNAs showed a later FIGO stage (OR = 1.94, 95% CI: 1.29 ~ 2.91), a poorer histological grade (OR = 3.40, 95% CI: 2.51 ~ 4.60), earlier deep myometrial invasion (OR = 2.57, 95% CI: 1.94 ~ 3.41), a higher likelihood of lymphatic vascular space infiltration (OR = 2.86, 95% CI: 1.15 ~ 7.14), an increased propensity for lymph node metastasis (OR = 2.89, 95% CI: 1.82 ~ 4.60), and a greater likelihood of distant metastasis (OR = 2.39, 95% CI: 1.33 ~ 4.30). All of these were statistically significant (p < 0.05). Furthermore, EC patients with a higher expression level of lncRNAs were significantly associated with five-year survival (p < 0.05) and PFS (p < 0.05). CONCLUSIONS High expression levels of upregulated lncRNAs in EC patients are associated with unfavorable clinicopathological features, a poor five-year survival rate, and PFS. It serves as a detrimental prognostic factor and might be a biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Ziling Yang
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Tianjiao Zheng
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Mengyao Zeng
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Xiaowen Lin
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Huixin Chen
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Weiqin Zheng
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Sizheng Peng
- Department of CardiologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shibo Li
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Tao Song
- Department of CardiologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yuhui Sun
- Department of GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
2
|
Fu H, Wang Q, Li H, Li H, Li J, Liu Y, Dang F, Wang L, Zhang X, Yang Y, Du Y. LINC02987 suppression hepatocellular carcinoma progression by modulating autophagy via the miR-338-3p/ATG12 axis. Exp Cell Res 2025; 444:114398. [PMID: 39746597 DOI: 10.1016/j.yexcr.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is marked by a high mortality rate, with the misregulation of long non-coding RNAs (LncRNAs) playing a key role in its development. Here, we studied the role of LINC02987 in HCC. We employed bioinformatics tools to identify LncRNAs and miRNAs that exhibit differential expression in HCC. Quantitative real-time reverse transcription PCR (RT-qPCR) and Western blot analysis were utilized to quantify gene and protein expression levels. The interaction between miR-338-3p and LINC02987 or ATG12 was confirmed through dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. We observed that LINC02987 was overexpressed in HCC tumor tissues and cell lines. Silencing of LINC02987 led to a reduction in cell viability, diminished clonogenic potential, and attenuated invasive and migratory capabilities. Also, decreasing protein level and fluorescence intensity of the autophagy-associated LC3 I/II. In HCC, miR-338-3p expression was downregulated, while inversely correlates with the overexpression of the autophagy protein ATG12. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in corresponding reporter assays. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in reporter assays. Transfection with si-LINC02987 decreased ATG12 expression, an effect that was partially reversed by miR-338-3p knockdown. Inhibition of miR-338-3p or overexpression of ATG12 increased LC3 I/II protein levels. Our results indicate that LINC02987 sequesters miR-338-3p, leading to increased ATG12 and promoting autophagy in HCC cells. These results highlight the potential of LINC02987 as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Haiyan Fu
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Qiuhong Wang
- Hepatobiliary and Pancreatic Surgery Department the Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue Wuhua Area, Kunming, 650101, China.
| | - Haiwen Li
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Hongjuan Li
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Jie Li
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Yu Liu
- Department of Gastroenterology, Kunming Ganmei Hospital, No.504 Qingnian Road Xishan Area, 650100, China.
| | - Futao Dang
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Lifeng Wang
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China.
| | - Xuan Zhang
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China.
| | - Yongrui Yang
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| | - Yingrong Du
- Oncology Department the Third People's Hospital of Kunming Sixth Affiliated Hospital of Dali University, No.319 Wujing Road, Guandu Area, 650000, China; Yunnan Infectious Disease Clinical Medical Center, China.
| |
Collapse
|
3
|
Huang X, Liang J, Li Y, Wei M, Liu Q, Jiang Y, Wang C, Ding J. Significance of serum lncRNA XIST in chronic obstructive pulmonary disease and its progression to pulmonary heart disease. BMC Pulm Med 2024; 24:546. [PMID: 39482714 PMCID: PMC11526528 DOI: 10.1186/s12890-024-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has become one of the major death-related causes. Chronic pulmonary heart disease (CPHD) is an adverse complication of COPD causing poor prognosis of patients. This study evaluated the role of lncRNA XIST in COPD and CPHD aiming to identify a potential biomarker for the screening and prediction of COPD. METHODS The study enrolled 127 COPD patients, including 73 patients occurred CPHD with 76 healthy individuals as the control group. The expression of XIST was evaluated by PCR and compared between COPD patients with different severity, grades, and complications. The diagnostic and prognostic values of XIST in COPD and CPHD were assessed by ROC and Kaplan-Meier analyses. RESULTS Significant upregulation of XIST was observed in the serum of COPD patients relative to healthy individuals, which distinguished COPD patients and showed a correlation with the respiratory and pulmonary function of COPD patients. COPD patients with acute exacerbations and CPHD showed a higher expression level. Increasing serum XIST discriminated COPD patients combined CPHD and positively correlated with right ventricular hypertrophy and pulmonary hypertension. Higher serum XIST levels could indicate the adverse 3-year prognosis of COPD patients, especially for COPD patients combined with CPHD. CONCLUSION Upregulated XIST served as a biomarker for screening COPD and predicting adverse prognosis of COPD and COPD patients with CPHD.
Collapse
Affiliation(s)
- Xiaoteng Huang
- Guizhou Higher Education Mega Center, Guizhou University of Chinese Medicine, Guiyang, 550025, China
| | - Jiayu Liang
- Department of Traditional Chinese Medicine, 905 Hospital of People's Liberation Army Navy, Shanghai, 200050, China
| | - Yongxiang Li
- Department of General Medicine, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Mengwen Wei
- Department of General Medicine, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Qingyue Liu
- Department of Critical Medicine, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Yunshu Jiang
- Department of Respiratory Medicine, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Chunfeng Wang
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Liaocheng, Liaocheng, 252600, China
| | - Jie Ding
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
4
|
Feng D, Wu X, Li G, Yang J, Jiang J, Liu S, Chen J. Cuproptosis related ceRNA axis AC008083.2/miR-142-3p promotes the malignant progression of nasopharyngeal carcinoma through STRN3. PeerJ 2024; 12:e17859. [PMID: 39148682 PMCID: PMC11326429 DOI: 10.7717/peerj.17859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Background CeRNA axis is an important way to regulate the occurrence and development of Nasopharyngeal carcinoma (NPC). Although the research on inducing cuproptosis of tumor cells is in the early stage of clinical practice, its mechanism of action is still of great significance for tumor treatment, including NPC. However, the regulation mechanism of cuproptosis in NPC by ceRNA network remains unclear. Methods The ceRNA network related to the survival of nasopharyngeal carcinoma related genes was constructed by bioinformatics. Dual-luciferase reporter assay and other experiments were used to prove the conclusion. Results Our findings indicate that the AC008083.2/miR-142-3p axis drives STRN3 to promote the malignant progression of NPC. By performing enrichment analysis and phenotypic assays, we demonstrated that the changes in the expressions of AC008083.2/miR-142-3p/NPC can affect the proliferation of NPC. Mechanistically, luciferase reporter gene assays suggested that AC008083.2 acts as a ceRNA of miR-142-3p to regulate the content of STRN3. Furthermore, the regulations of STRN3 and the malignant progression of NPC by AC008083.2 depends on miR-142-3p to some extent. Conclusions Our study reveals an innovative ceRNA regulatory network in NPC, which can be considered a new potential target for diagnosing and treating NPC.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Xiaoping Wu
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Genping Li
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Junhui Yang
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Jianguo Jiang
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Shunan Liu
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| | - Jichuan Chen
- Department of Otolaryngology Head and Neck Surgery, Army Special Medical Center (Daping Hospital), Army Medical University, Chongqing, Chongqing, China
| |
Collapse
|
5
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
6
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
7
|
Han L, Hao P, Wang W, Wu Y, Ruan S, Gao C, Tian W, Tian Y, Li X, Wang L, Zhang W, Wang H, Chang Y, Ding J. Molecular mechanisms that regulate the heat stress response in sea urchins (Strongylocentrotus intermedius) by comparative heat tolerance performance and whole-transcriptome RNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165846. [PMID: 37541492 DOI: 10.1016/j.scitotenv.2023.165846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
In the context of climate change and extreme high temperature, the commercially important sea urchin Strongylocentrotus intermedius suffers high mortality during summer in Northern China. How sea urchins respond to high temperatures is of great concern to academia and industry. How to understand the heat tolerance of sea urchin from the whole transcriptome level. In this study, the heat-resistant S. intermedius bred by our team and its control group were used as the research objects, then we applied whole-transcriptome RNA sequencing to detect differentially expressed mRNAs, microRNAs, long noncoding RNAs that respond to heat stress in the heat-resistant and control S. intermedius. A competitive endogenous RNA (ceRNA) regulatory network was constructed with predicted pairs of differentially expressed mRNAs and noncoding RNAs and revealed the molecular regulatory mechanisms in S. intermedius responding to heat stress. A functional analysis suggested that the ceRNAs were involved in basal metabolism, calcium ion transport, endoplasmic reticulum stress, and apoptosis. This is the whole-transcriptomic analysis of S. intermedius under heat stress to propose ceRNA networks that will provide a basis for studying the potential functions of long noncoding RNAs and miRNAs in the heat stress response in S. intermedius and provide a theoretical basis for the study of the molecular mechanism of sea urchins in response to environmental changes.
Collapse
Affiliation(s)
- Lingshu Han
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Pengfei Hao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Wenpei Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yanglei Wu
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Shuchao Ruan
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Chuang Gao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Wanrong Tian
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Ye Tian
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Xiaonan Li
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Luo Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Weijie Zhang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Heng Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yaqing Chang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Jun Ding
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| |
Collapse
|
8
|
Lenda B, Żebrowska-Nawrocka M, Turek G, Balcerczak E. Zinc Finger E-Box Binding Homeobox Family: Non-Coding RNA and Epigenetic Regulation in Gliomas. Biomedicines 2023; 11:biomedicines11051364. [PMID: 37239035 DOI: 10.3390/biomedicines11051364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the most common malignant brain tumours. Among them, glioblastoma (GBM) is a grade four tumour with a median survival of approximately 15 months and still limited treatment options. Although a classical epithelial to mesenchymal transition (EMT) is not the case in glioma due to its non-epithelial origin, the EMT-like processes may contribute largely to the aggressive and highly infiltrative nature of these tumours, thus promoting invasive phenotype and intracranial metastasis. To date, many well-known EMT transcription factors (EMT-TFs) have been described with clear, biological functions in glioma progression. Among them, EMT-related families of molecules such as SNAI, TWIST and ZEB are widely cited, well-established oncogenes considering both epithelial and non-epithelial tumours. In this review, we aimed to summarise the current knowledge with a regard to functional experiments considering the impact of miRNA and lncRNA as well as other epigenetic modifications, with a main focus on ZEB1 and ZEB2 in gliomas. Although we explored various molecular interactions and pathophysiological processes, such as cancer stem cell phenotype, hypoxia-induced EMT, tumour microenvironment and TMZ-resistant tumour cells, there is still a pressing need to elucidate the molecular mechanisms by which EMT-TFs are regulated in gliomas, which will enable researchers to uncover novel therapeutic targets as well as improve patients' diagnosis and prognostication.
Collapse
Affiliation(s)
- Bartosz Lenda
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Grzegorz Turek
- Department of Neurosurgery, Bródnowski Masovian Hospital, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
9
|
Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S. LncRNA Pnky Positively Regulates Neural Stem Cell Migration by Modulating mRNA Splicing and Export of Target Genes. Cell Mol Neurobiol 2023; 43:1199-1218. [PMID: 35748966 PMCID: PMC11414454 DOI: 10.1007/s10571-022-01241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Collapse
Affiliation(s)
- Jiannan Du
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Jiale Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| |
Collapse
|
10
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
11
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
12
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
13
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sun Z, Zhou Q, Yang Y, Li L, Yu M, Li H, Li A, Wang X, Jiang Y. Identification and ultrasensitive photoelectrochemical detection of LncNR_040117: a biomarker of recurrent miscarriage and antiphospholipid antibody syndrome in platelet-derived microparticles. J Nanobiotechnology 2022; 20:396. [PMID: 36045427 PMCID: PMC9429728 DOI: 10.1186/s12951-022-01608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/22/2022] [Indexed: 09/04/2024] Open
Abstract
The abnormal expression of long non-coding RNAs (LncRNAs) in platelet-derived microparticles (PMPs) is closely related to immune disorders and may lead to antiphospholipid antibody syndrome and recurrent miscarriage. To understand the association between the LncRNAs in PMPs and RM/APS, the differences in the expression of LncRNAs in RM/APS patients and healthy controls were analyzed. Microarray analysis and RT-qPCR detection proved that RM/APS patient exhibited high levels of LncNR_040117 expression. The lentiviral silent expression transfection of HTR-8/SVneo cells indicated that LncNR_040117 downregulation decreased the activity of HTR-8/SVneo cells and inhibited the MAPK signaling pathway, further confirming the biomarker proficiency of LncNR_040117 for RM/APS. After that, we proposed a β-In2S3@g-C3N4 nanoheterojunction-based photoelectrochemical (PEC) biosensor to achieve the ultrasensitive detection of LncNR_040117. The nanoheterojunction aids in the effective separation of photogenerated carriers and significantly improve the photocurrent response of the biosensor. The conjugation of LncNR_040117 onto the PEC biosensing platform increased the steric hindrance between electrolyte and electrode, subsequently decreasing the photocurrent signal. The PEC biosensor showed a wide detection range of 0.1-106 fM and a low limit of detection of 0.025 fM. For clinical sample testing, the results of the PEC and RT-qPCR were highly consistent. Overall, LncNR_040117 in PMPs was identified as an effective biomarker for RM/APS and could be accurately detected by the proposed PEC biosensor, which is expected to provide a reliable diagnostic platform for RM/APS.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Qian Zhou
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China
| | - Mengru Yu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China.
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.
| |
Collapse
|
15
|
Song L, Chen J, Lo CYZ, Guo Q, Feng J, Zhao XM. Impaired type I interferon signaling activity implicated in the peripheral blood transcriptome of preclinical Alzheimer's disease. EBioMedicine 2022; 82:104175. [PMID: 35863293 PMCID: PMC9304603 DOI: 10.1016/j.ebiom.2022.104175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Subjective or objective subtle cognitive decline (SCD) is considered the preclinical manifestation of Alzheimer's disease (AD), which is a potentially crucial window for preventing or delaying the progression of the disease. Methods To explore the potential mechanism of disease progression and identify relevant biomarkers, we comprehensively assessed the peripheral blood transcriptomic alterations in SCD, covering lncRNA, mRNA, and miRNA. Findings Dysregulated protein-coding mRNA at both gene and isoform levels implicated impairment in the type I interferon signaling pathway in SCD. Specifically, this pathway was regulated by the transcription factor STAT1 and ncRNAs NRIR and has-miR-146a-5p. The miRNA-mRNA-lncRNA co-expression network revealed hub genes for the interferon module. Individuals with lower interferon signaling activity and lower expression of a hub gene STAT1 exhibited a higher conversion rate to mild cognitive impairment (MCI). Interpretation Our findings illustrated the down-regulation of interferon signaling activity would potentially increase the risk of disease progression and thus serve as a pre-disease biomarker. Funding This work was partly supported by National Key R&D Program of China (2020YFA0712403), National Natural Science Foundation of China (61932008), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), the 111 Project (No. B18015) of China, Greater Bay Area Institute of Precision Medicine (Guangzhou) (Grand No. IPM21C008), Natural Science Foundation of Shanghai (21ZR1403200), and Shanghai Center for Brain Science and Brain-Inspired Technology.
Collapse
|
16
|
Karam RA, Amer MM, Zidan HE. Long Noncoding RNA NEAT1 Expression and Its Target miR-124 in Diabetic Ischemic Stroke Patients. Genet Test Mol Biomarkers 2022; 26:398-407. [PMID: 36027040 DOI: 10.1089/gtmb.2021.0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Diabetes mellitus is a known risk factor for stroke and may be linked to poorer post-stroke outcomes. However, the underlying molecular mechanisms remain to be fully identified. In this study we assessed the association of the lncRNA Nuclear enriched abundant transcript 1 (NEAT1)'s expression and its target miRNA-124 with acute ischemic stroke (AIS) in type II diabetic patients (T2DM). Methods and Results: Diabetic patients with stroke, non-diabetics with stroke, diabetics without stroke, and controls were recruited. NEAT1 and miR-124 expression levels in plasma samples from the participants were investigated using real-time reverse transcription-polymerase chain reaction (RT-qPCR). C reactive protein (CRP) and tumor necrosis factor alpha (TNF-α) were measured using an enzyme linked immunosorbent assay (ELISA) technique. In the DM+AIS group, NEAT1 expression was considerably higher, compared with AIS group and with control group. In comparison to the AIS-only patients, DM patients and controls, miR-124 expression was considerably lower in the DM+AIS group. NEAT1 was shown to have good predictive value for AIS risk in diabetics, based on Receiver Operating Characteristic (ROC) curve analysis. In both the DM+AIS and the AIS group, NEAT1 levels was strongly linked with the National Institutes of Health Stroke Scale (NIHSS) score. Also, a significant positive correlation was observed between NEAT1 expression and the inflammatory markers CRP and TNF-α and significant negative association with miRNA-124 in patient groups. Conclusion: In diabetic patients, the lncRNA NEAT1 may influence the incidence, severity, inflammation, and prognosis of AIS. NEAT1 expression levels could be used as a diagnostic marker of stroke in diabetic patients.
Collapse
Affiliation(s)
- Rehab A Karam
- Biochemistry Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Mona M Amer
- Neurology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Wang Y, Jia L, Wang C, Du Z, Zhang S, Zhou L, Wen X, Li H, Chen H, Nie Y, Li D, Liu S, Figueroa DS, Ay F, Xu W, Zhang S, Li W, Cui J, Hoffman AR, Guo H, Hu JF. Pluripotency exit is guided by the Peln1-mediated disruption of intrachromosomal architecture. J Cell Biol 2022; 221:213009. [PMID: 35171230 PMCID: PMC8855478 DOI: 10.1083/jcb.202009134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.
Collapse
Affiliation(s)
- Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Zhonghua Du
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Xue Wen
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huiling Chen
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Yuanyuan Nie
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Dan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | | | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Wei Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Andrew R Hoffman
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Guo
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
18
|
Zhou X, Lu J, Wu B, Guo Z. HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188-5p to regulate VEGFA. J Dermatol Sci 2022; 106:111-118. [DOI: 10.1016/j.jdermsci.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 01/14/2023]
|
19
|
Gu H, Chen S, Zhang M, Wen Y, Li B. Differences in the expression profiles of lncRNAs and mRNAs in partially injured anterior cruciate ligament and medial collateral ligament of rabbits. PeerJ 2022; 10:e12781. [PMID: 35070509 PMCID: PMC8760859 DOI: 10.7717/peerj.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), as a novel regulatory factor, are considered to play a vital role in various biological processes and diseases. However, the overall expression profile and biological functions of lncRNAs in the partially injured anterior cruciate ligament (ACL) and medial collateral ligament (MCL) have not been clearly explored. Partially injured models of ACL and MCL were established in 3-month-old healthy male New Zealand white rabbits. Expression of lncRNAs and mRNAs in the ligament tissue was detected by high-throughput sequencing technology, and biological functions of differentially expressed RNAs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Validation of several differentially expressed RNAs was performed using quantitative real-time PCR (qRT-PCR). Protein-protein interaction (PPI) analysis and competitive endogenous RNA (ceRNA) prediction were used to identify interactions among hub genes and the interaction among lncRNAs, miRNAs, and mRNAs. The results showed that compared with the normal group, there were 267 mRNAs and 329 lncRNAs differentially expressed in ACL and 726 mRNAs and 609 lncRNAs in MCL in the injured group. Compared with MCL, 420 mRNAs and 470 lncRNAs were differentially expressed in ACL in the normal group; 162 mRNAs and 205 lncRNAs were differentially expressed in ACL in the injured group. Several important lncRNAs and genes were identified, namely, COL7A1, LIF, FGFR2, EPHA2, CSF1, MMP2, MMP9, SOX5, LOX, MSTRG.1737.1, MSTRG.26038.25, MSTRG.20209.5, MSTRG.22764.1, and MSTRG.18113.1, which are closely related to inflammatory response, tissue damage repair, cell proliferation, differentiation, migration, and apoptosis. Further study of the functions of these genes may help to better understand the specific molecular mechanisms underlying the occurrence of endogenous repair disorders in ACL, which may provide new ideas for further exploration of effective means to promote endogenous repair of ACL injury.
Collapse
Affiliation(s)
- Huining Gu
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Siyuan Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingzheng Zhang
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bin Li
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Vannini I, Ferracin M, Fabbri F, Fabbri M. Overexpression of ultraconserved region 83- induces lung cancer tumorigenesis. PLoS One 2022; 17:e0261464. [PMID: 35015757 PMCID: PMC8752010 DOI: 10.1371/journal.pone.0261464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023] Open
Abstract
The expression of non-coding RNAs (ncRNAs) is dysregulated in human cancers. The transcribed ultraconserved regions (T-UCRs) express long ncRNAs involved in human carcinogenesis. T-UCRs are non-coding genomic sequence that are 100% conserved across humans, rats and mice. Conservation of genomic sequences across species intrinsically implies an essential functional role and so we considered the expression of T-UCRs in lung cancer. Using a custom microarray we analyzed the global expression of T-UCRs. Among these T-UCRs, the greatest variation was observed for antisense ultraconserved element 83 (uc.83-), which was upregulated in human lung cancer tissues compared with adjacent non cancerous tissues. Even though uc.83- is located within the long intergenic non-protein coding RNA 1876 (LINC01876) gene, we found that the transcribed uc.83- is expressed independently of LINC01876 and was cloned as a 1143-bp RNA gene. In this study, functional analysis confirmed important effects of uc.83- on genes involved in cell growth of human cells. siRNA against uc.83- decreased the growth of lung cancer cells while the upregulation through a vector overexpressing the uc.83- RNA increased cell proliferation. We also show the oncogenic function of uc.83- is mediated by the phosphorylation of AKT and ERK 1/2, two important biomarkers of lung cancer cell proliferation. Based on our findings, inhibition against uc.83- could be a future therapeutic treatment for NSCLC to achieve simultaneous blockade of pathways involved in lung carcinogenesis.
Collapse
Affiliation(s)
- Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, University of Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Muller Fabbri
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States of America
| |
Collapse
|
21
|
Sun W, Sun L, Sun X, Ma S. Long non-coding RNA SNHG7 upregulates FGF9 to alleviate oxygen and glucose deprivation-induced neuron cell injury in a miR-134-5p-dependent manner. Metab Brain Dis 2021; 36:2483-2494. [PMID: 34661812 DOI: 10.1007/s11011-021-00852-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) was reported to regulate the pathogenesis of ischemic stroke. The study aimed to disclose SNHG7 role in oxygen and glucose deprivation (OGD)-induced Neuro-2a (N2a) cell disorders. An OGD injury cell model was established using N2a cells. The expression of SNHG7, microRNA-134-5p (miR-134-5p) and fibroblast growth factor 9 (FGF9) was determined by quantitative real-time polymerase chain reaction. Protein expression was detected by western blot. Cell viability and Lactate Dehydrogenase (LDH) leakage were determined by cell counting kit-8 and LDH activity detection assays. Oxidative stress was investigated by Superoxide Dismutase and Catalase activity assays as well as Malondialdehyde and Reactive Oxygen Species detection kits. Cell apoptosis and caspase-3 activity were severally demonstrated by flow cytometry and caspase-3 activity assays. The interaction between miR-134-5p and SNHG7 or FGF9 was predicted by online databases, and identified by mechanism assays. OGD treatment decreased SNHG7 and FGF9 expression, but increased miR-134-5p expression. OGD treatment repressed cell viability, promoted LDH leakage and induced oxidative stress and apoptosis in N2a cells, which was rescued by SNHG7 overexpression. SNHG7 acted as a sponge for miR-134-5p, and regulated OGD-triggered cell damage by associating with miR-134-5p. Additionally, miR-134-5p depletion protected N2a cells from OGD-induced injury by targeting FGF9. Ectopic SNHG7 expression protected against OGD-induced neuronal cell injury by inducing FGF9 through sponging miR-134-5p, providing a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Wei Sun
- Department of Internal Medicine-Neurology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City, Liaoning Province, China
| | - Lu Sun
- Department of Cardiac Function Examination, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City, Liaoning Province, China
| | - Xiaopeng Sun
- Department of Internal Medicine-Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, No.826 Southwest Road, Shahekou District, Dalian City, 116021, Liaoning Province, China
| | - Shubei Ma
- Department of Internal Medicine-Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, No.826 Southwest Road, Shahekou District, Dalian City, 116021, Liaoning Province, China.
| |
Collapse
|
22
|
Tamgue O, Mezajou CF, Ngongang NN, Kameni C, Ngum JA, Simo USF, Tatang FJ, Akami M, Ngono AN. Non-Coding RNAs in the Etiology and Control of Major and Neglected Human Tropical Diseases. Front Immunol 2021; 12:703936. [PMID: 34737736 PMCID: PMC8560798 DOI: 10.3389/fimmu.2021.703936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in immune cells development and function. Their expression is altered in different physiological and disease conditions, hence making them attractive targets for the understanding of disease etiology and the development of adjunctive control strategies, especially within the current context of mitigated success of control measures deployed to eradicate these diseases. In this review, we summarize our current understanding of the role of ncRNAs in the etiology and control of major human tropical diseases including tuberculosis, HIV/AIDS and malaria, as well as neglected tropical diseases including leishmaniasis, African trypanosomiasis and leprosy. We highlight that several ncRNAs are involved at different stages of development of these diseases, for example miR-26-5p, miR-132-3p, miR-155-5p, miR-29-3p, miR-21-5p, miR-27b-3p, miR-99b-5p, miR-125-5p, miR-146a-5p, miR-223-3p, miR-20b-5p, miR-142-3p, miR-27a-5p, miR-144-5p, miR-889-5p and miR-582-5p in tuberculosis; miR-873, MALAT1, HEAL, LINC01426, LINC00173, NEAT1, NRON, GAS5 and lincRNA-p21 in HIV/AIDS; miR-451a, miR-let-7b and miR-106b in malaria; miR-210, miR-30A-5P, miR-294, miR-721 and lncRNA 7SL RNA in leishmaniasis; and miR-21, miR-181a, miR-146a in leprosy. We further report that several ncRNAs were investigated as diseases biomarkers and a number of them showed good potential for disease diagnosis, including miR-769-5p, miR-320a, miR-22-3p, miR-423-5p, miR-17-5p, miR-20b-5p and lncRNA LOC152742 in tuberculosis; miR-146b-5p, miR-223, miR-150, miR-16, miR-191 and lncRNA NEAT1 in HIV/AIDS; miR-451 and miR-16 in malaria; miR-361-3p, miR-193b, miR-671, lncRNA 7SL in leishmaniasis; miR-101, miR-196b, miR-27b and miR-29c in leprosy. Furthermore, some ncRNAs have emerged as potential therapeutic targets, some of which include lncRNAs NEAT1, NEAT2 and lnr6RNA, 152742 in tuberculosis; MALAT1, HEAL, SAF, lincRNA-p21, NEAT1, GAS5, NRON, LINC00173 in HIV/AIDS; miRNA-146a in malaria. Finally, miR-135 and miR-126 were proposed as potential targets for the development of therapeutic vaccine against leishmaniasis. We also identify and discuss knowledge gaps that warrant for increased research work. These include investigation of the role of ncRNAs in the etiology of African trypanosomiasis and the assessment of the diagnostic potential of ncRNAs for malaria, and African trypanosomiasis. The potential targeting of ncRNAs for adjunctive therapy against tuberculosis, leishmaniasis, African trypanosomiasis and leprosy, as well as their targeting in vaccine development against tuberculosis, HIV/AIDS, malaria, African trypanosomiasis and leprosy are also new avenues to explore.
Collapse
Affiliation(s)
- Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | | | | | - Charleine Kameni
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Jubilate Afuoti Ngum
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | | | - Fabrice Junior Tatang
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Mazarin Akami
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Annie Ngane Ngono
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
23
|
Liu C, Han X, Li B, Huang S, Zhou Z, Wang Z, Wang W. MALAT-1 is Associated with the Doxorubicin Resistance in U-2OS Osteosarcoma Cells. Cancer Manag Res 2021; 13:6879-6889. [PMID: 34512027 PMCID: PMC8421671 DOI: 10.2147/cmar.s304922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Our study aimed to investigate the relationship between MALAT-1 (metastasis-associated lung adenocarcinoma transcript 1) expression and the chemotherapy drug resistance in osteosarcoma. Methods The U-2OS osteosarcoma cell line was selected for the experiment. The cells were treated with methotrexate, doxorubicin, cisplatin, and ifosfamide, respectively. RT-PCR was applied to detect the MALAT-1 expression in cells. The doxorubicin-resistant cell line was constructed. The cells were divided into doxorubicin-sensitivity group (DS/shCtrl), doxorubicin-resistance group (DR/shCtrl) and shMALAT1-doxorubicin-resistance group (DR/shMALAT1). The colony formation assay and 5-ethynyl-2ʹ-deoxyuridine (EdU) assay were used to detect cell proliferation. PI staining was used to detect the cell cycle. Transwell assay and wound healing assay were used to observe the migration and invasion ability. Annexin V-FITC assay was used to detect cell apoptosis. Western blot was used to detect the protein expression and potential mechanism. The impacts of MALAT-1 expression were verified in vivo. Results The MALAT-1 was upregulated in the doxorubicin-resistant U-2OS osteosarcoma cells. Downregulating MALAT-1 in the doxorubicin-resistant cells inhibited the proliferation, migration, and invasiveness, increased the ratio of cells in the G0/G1 phase, promoted apoptosis. In the doxorubicin-resistant U-2OS cells, the extracellular regulated protein kinases (ERK) phosphorylation was declined, which could be reversed by downregulating MALAT-1. In vivo assay indicated that the growth of doxorubicin-resistant solid osteosarcoma could be suppressed by downregulating MALAT-1. Conclusion Our study provides evidence that doxorubicin may upregulate MALAT-1 in osteosarcoma. Downregulating MALAT-1 in the doxorubicin resistance U-2OS cells could reverse the resistance and may improve chemotherapeutic efficiency. Some conclusions in previous literature may be one-sided.
Collapse
Affiliation(s)
- Chang Liu
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian Province, 350025, People's Republic of China.,Department of Orthopedics, Changhai Hospital Affiliated to the Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xuesong Han
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian Province, 350025, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Changhai Hospital Affiliated to the Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shaobin Huang
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian Province, 350025, People's Republic of China
| | - Zhong Zhou
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian Province, 350025, People's Republic of China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital Affiliated to the Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wanming Wang
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian Province, 350025, People's Republic of China
| |
Collapse
|
24
|
Shang C, Li Y, He T, Liao Y, Du Q, Wang P, Qiao J, Guo H. The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer. J Adv Res 2021; 37:169-184. [PMID: 35499057 PMCID: PMC9040090 DOI: 10.1016/j.jare.2021.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
The prognostic miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating lipid droplets accumulation. miR-532-5p-correlated ceRNA network in which LINC01410 directly bound to miR-532-5p effectively functioned as a sponge for miR-532-5p to disinhibit its target gene-FASN. Combined therapy with miR-532-5p and FASN inhibitor-orlistat blocked lymph node metastasis and tumor growth.
Introduction The prognosis for cervical cancer (CC) patients with lymph node metastasis (LNM) is extremely poor. Lipid droplets (LDs) have a pivotal role in promoting tumor metastasis. The crosstalk mechanism between LDs and LNM modulated in CC remains largely unknown. Objectives This study aimed to construct a miRNA-dependent progonostic model for CC patients and investigate whether miR-532-5p has a biological impact on LNM by regualting LDs accumulation. Methods LASSO-Cox regression was applied to establish a prognostic prediction model. miR-532-5p had the lowest P-value in RNA expression (P < 0.001) and prognostic prediction (P < 0.0001) and was selected for further study. The functional role of the prognostic miR-532-5p-correlated competing endogenous RNA (ceRNA) network was investigated to clarify the crosstalk between LDs and LNM. The underlying mechanism was determined using site-directed mutagenesis, dual luciferase reporter assays, RNA immunoprecipitation assays, and rescue experiments. A xenograft LNM model was established to evaluate the effect of miR-532-5p and orlistat combination therapy on tumor growth and LNM. Results A novel 5-miRNAs prognostic signature was constructed to better predict the prognosis of CC patient. Further study demonstrated that miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating LDs accumulation. Interestingly, we also found that LDs accumulation promoted cell metastasis in vitro. Mechanistically, we demonstrated a miR-532-5p-correlated ceRNA network in which LINC01410 was bound directly to miR-532-5p and effectively functioned as miR-532-5p sponge to disinhibit its target gene-fatty acid synthase (FASN). Combined therapy with miR-532-5p and FASN inhibitor-orlistat further inhibited tumor growth and LNM in vivo. Conclusion Our findings highlight a LD accumulation-dependent mechanism of miR-532-5p-modulated LNM and support treatment with miR-532-5p/orlistat as novel strategy for treating patients with LNM in CC.
Collapse
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, 100191 Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, 100191 Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191 Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191 Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, 100191 Beijing, China
- Corresponding authors at: Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Key Laboratory of Assisted, Beijing 100191, China (J. Qiao).
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191 Beijing, China
- Corresponding authors at: Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Key Laboratory of Assisted, Beijing 100191, China (J. Qiao).
| |
Collapse
|
25
|
Dong Y, Lyu L, Zhang D, Li J, Wen H, Shi B. Integrated lncRNA and mRNA Transcriptome Analyses in the Ovary of Cynoglossus semilaevis Reveal Genes and Pathways Potentially Involved in Reproduction. Front Genet 2021; 12:671729. [PMID: 34093665 PMCID: PMC8172126 DOI: 10.3389/fgene.2021.671729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.
Collapse
Affiliation(s)
- Yani Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.,Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Daiqiang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Zhang H, Qin C, Liu HW, Guo X, Gan H. An Effective Hypoxia-Related Long Non-Coding RNAs Assessment Model for Prognosis of Clear Cell Renal Carcinoma. Front Oncol 2021; 11:616722. [PMID: 33692953 PMCID: PMC7937891 DOI: 10.3389/fonc.2021.616722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a significant clinical feature and regulates various tumor processes in clear cell renal carcinoma (ccRCC). Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) are closely associated with the survival outcomes of ccRCC patients and regulates hypoxia-induced tumor processes. Thus, this study aimed to develop a hypoxia-related lncRNA (HRL) prognostic model for predicting the survival outcomes in ccRCC. LncRNAs in ccRCC samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signatures Database. A co-expression analysis between differentially expressed lncRNAs and hypoxia-related genes in ccRCC samples was performed to identify HRLs. Univariate and multivariate Cox regression analyses were performed to select nine optimal lncRNAs for developing the HRL model. The prognostic model showed good performance in predicting prognosis among patients with ccRCC, and the validation sets reached consistent results. The model was also found to be related to the clinicopathologic parameters of tumor grade and tumor stage and to tumor immune infiltration. In conclusion, our findings indicate that the hypoxia-lncRNA assessment model may be useful for prognostication in ccRCC cases. Furthermore, the nine HRLs included in the model might be useful targets for investigating the tumorigenesis of ccRCC and designing individualized treatment strategies.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hua Wen Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Abstract
Long noncoding RNAs (lncRNAs) are involved in many regulatory mechanisms in practically every step of the RNA cycle, from transcription to RNA stability and translation. They are a highly heterogeneous class of molecules in terms of site of production, interaction networks, and functions. More and more databases are available on the web with the aim to make public information about lncRNA accessible to the scientific community. Here we review the most interesting resources with the purpose to organize a compendium of useful tools to interrogate before studying a lncRNA of interest.
Collapse
|
28
|
Samir A, El Khodiry AA, ElTayebi HM. From Whole Blood to Isolated Pro-Metastasis Immune Cells: An Ex Vivo Approach to Isolate and Manipulate Immune Cells Contributing to Tumor Metastasis. Methods Mol Biol 2021; 2294:209-218. [PMID: 33742404 DOI: 10.1007/978-1-0716-1350-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune evasion hallmark has grabbed wide attention in cancer progression on the clinical level. Accordingly, innate and adaptive immune cells isolation and manipulation is essential in order to assess their activity and role in the tumor microenvironment (TME). This could open a gate toward a personalized therapy by a simple aspiration of blood sample from patients. Here, we describe the isolation of peripheral blood mononuclear cells (PBMCs) using Ficoll plus media in order to achieve the highest yield of immune cells that can be further processed and used in isolation of specific immune cells such as macrophages and cytotoxic T cells (CD8+ cells). Among the highly metastatic macrophages are the M2. This protocol describes the optimized techniques to isolate monocytes from whole blood, differentiate them into M2. This is followed by genetic and epigenetic (using synthetic nucleotides of noncoding RNAs) manipulation of these isolated immune cells in a tumor culture media, in addition to measurement of released cytokines using specific ELISA kit. In the last decade, new groups of noncoding RNAs have been emerged which are microRNAs and long noncoding RNAs. First, they were known as "junk DNA" with unknown regulatory functions. Despite the limited knowledge of these molecules, basic expression profiling is proving to be clinically relevant to cancer diagnosis, metastasis, and prognosis. Here, we describe methods used in molecular biology to assess the epigenetic expression of ncRNAs and their impact on other messenger RNA transcripts in M2 macrophages that could serve as future biomarkers in the context of tumor biology and metastasis or could open a gate in the treatment of cancer.
Collapse
Affiliation(s)
- Amany Samir
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Aya Aly El Khodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M ElTayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
29
|
LINC00052 ameliorates acute kidney injury by sponging miR-532-3p and activating the Wnt signaling pathway. Aging (Albany NY) 2020; 13:340-350. [PMID: 33231561 PMCID: PMC7835036 DOI: 10.18632/aging.104152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is a complex renal disease. Long non-coding RNAs (lncRNAs) have frequently been associated with AKI. In the present study, we aimed to investigate the molecular mechanism(s) of LINC00052 in AKI. We found that LINC00052 expression was significantly decreased in AKI patient serum. In addition, in a hypoxic AKI cell model, LINC00052 expression was strongly elevated. In an I/R-triggered AKI rat model, the expression of TNF-α, IL-6 and IL-1β mRNA was strongly elevated. Moreover, we predicted miR-532-3p to be targeted by LINC00052 in AKI. Overexpression of LINC00052 increased hypoxia-induced inhibition of NRK-52E cell proliferation and reversed hypoxia-triggered apoptosis. Furthermore, we found that induction of TNF-α, IL-6 and IL-1β was repressed by overexpression of LINC00052. LINC00052 decreased hypoxia-induced ROS and MDA accumulation in vitro and increased SOD activity. Decreased levels of c-myc and cyclin D1 were observed in renal tissues of AKI rats. Lastly, Wnt/β-catenin signaling was inactivated in NRK-52E cells experiencing hypoxia, and LINC00052 upregulation reactivated Wnt/β-catenin signaling by sponging miR-532-3p. Taken together, these results suggest that LINC00052 ameliorates AKI by sponging miR-532-3p and activating Wnt signaling.
Collapse
|
30
|
Zhu H, Bian X, Gong J, Yu P, Lu H. Long noncoding RNAs as novel biomarkers for Type 2 diabetes. Biomark Med 2020; 14:1501-1511. [PMID: 33155821 DOI: 10.2217/bmm-2020-0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by disordered glucagon secretion, insulin resistance in target tissues, and decreased islet β-cell mass and function. The routine diagnosis was based on measurements of metabolic markers, while genetic risk factors have been considered to increase the probability of predicting the development of the disease. Recent evidence suggests that long noncoding RNAs (lncRNAs) regulate gene expression in various physiological and pathological processes. As increasing lncRNAs are identified in β cells, understanding the regulatory roles of lncRNAs in T2D becomes indispensable. In this review, we discuss the potential role of lncRNAs contributing to β-cell identity and T2D susceptibility, which provide a perspective insight into the development of novel diagnosis biomarkers for T2D.
Collapse
Affiliation(s)
- Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| |
Collapse
|
31
|
Associations between HOTAIR polymorphisms rs4759314, rs920778, rs1899663, and rs7958904 and risk of primary ovarian insufficiency in Korean women. Maturitas 2020; 144:74-80. [PMID: 33358212 DOI: 10.1016/j.maturitas.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the association between the Hox transcript antisense RNA (HOTAIR) polymorphisms rs4759314, rs920778, rs1899663, and rs7958904 and primary ovarian insufficiency (POI) in Korean women. METHODS We conducted a case-control study of 134 Korean women with POI and 383 control individuals with at least one live birth and no history of pregnancy loss. RESULTS The GT genotype of rs1899663 was associated with a decreased risk of POI compared with other genotypes at that locus. In addition, compared with the wild-type homozygous genotypes, the combination of the AA genotype of rs4759314 and the GC genotype of rs7958904 was associated with a decreased risk of POI (P < 0.05), whereas the combination of the GG genotype of rs1899663 and the GC genotype of rs7958904 was associated with an increased risk of POI (P = 0.003). Haplotype analysis revealed that certain haplotypes involving some or all of the polymorphisms were associated with a decreased risk of POI, whereas other haplotypes were associated with an increased risk of POI. Serum levels of luteinizing hormone, follicle-stimulating hormone, and estradiol differed between patients with POI and control individuals (P < 0.05). CONCLUSIONS Our results suggest that the HOTAIR polymorphisms rs4759314, rs920778, rs1899663, and rs7958904 are involved in POI.
Collapse
|
32
|
Ravi P, Singh SP, Kang JW, Tran S, Dasari RR, So PTC, Liepmann D, Katti K, Katti D, Renugopalakrishnan V, Paulmurugan R. Spectrochemical Probing of MicroRNA Duplex Using Spontaneous Raman Spectroscopy for Biosensing Applications. Anal Chem 2020; 92:14423-14431. [PMID: 32985868 DOI: 10.1021/acs.analchem.0c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs are emerging as both diagnostic and therapeutic targets in different human pathologies. An accurate understanding of the structural dependency of microRNAs for their biological functions is essential for designing synthetic oligos with various base and linkage modifications that can transform into highly sensitive diagnostic devices and therapeutic molecules. In this proof-of-principle study, we have utilized label-free spontaneous Raman spectroscopy to understand the structural differences in sense and antisense microRNA-21 by hybridizing them with complementary RNA and DNA oligos. Overall, the results suggest that the changes in the Raman band at 785 cm-1 originating from the phosphodiester bond of the nucleic acid backbone, linking 5' phosphate of the nucleic acid with 3' OH of the other nucleotide, can serve as a marker to identify these structural variations. Our results support the application of Raman spectroscopy in discerning intramolecular (ssRNA and ssDNA) and intermolecular (RNA-RNA, RNA-DNA, and DNA-DNA hybrids) interactions of nucleic acids. This is potentially useful for developing biosensors to quantify microRNAs in clinical samples and to design therapeutic microRNAs with robust functionality.
Collapse
Affiliation(s)
- Preetham Ravi
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.,Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Surya Pratap Singh
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka 580011, India
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah Tran
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dorian Liepmann
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Kalpana Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| |
Collapse
|
33
|
LOC101928834, a novel lncRNA in Wnt/β-catenin signaling pathway, promotes cell proliferation and predicts poor clinical outcome in myelodysplastic syndromes. Clin Sci (Lond) 2020; 134:1279-1293. [PMID: 32463458 DOI: 10.1042/cs20200439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in hematological malignancies. We have previously identified several differentially expressed lncRNAs in myelodysplastic syndromes (MDS) by microarray analysis. In the present study, we explored the regulatory circuitry, potential functions, clinical and prognostic relevance of these lncRNAs in MDS by developing a lncRNA regulation network. We identified a novel lncRNA, LOC101928834, which was significantly up-regulated in the bone marrow of patients with MDS and acute myeloid leukemia (AML). We further evaluated the clinical relevance of LOC101928834 in 89 MDS and 110 AML patients and found that higher level of LOC101928834 expression was associated with higher white blood cell count, higher blast percentage, the subtype of refractory cytopenia with excess blasts (RAEB) and shorter overall survival in MDS patients. Receiver operating characteristic (ROC) curve analysis showed that LOC101928834 expression could discriminate MDS-RAEB patients from control with an area under the receiver-operating curve (AUC) of 0.9048. Moreover, functional analysis showed that LOC101928834 promoted cell proliferation and cell cycle progression, and activated Wnt/β-catenin signaling pathway in vitro. In conclusion, LOC101928834 expression is correlated with clinical and biological features of MDS and may serve as a novel diagnostic and prognostic biomarker.
Collapse
|
34
|
Liu S, Zheng Y, Zhang Y, Zhang J, Xie F, Guo S, Gu J, Yang J, Zheng P, Lai J, Yin L, Wang H. Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics 2020; 10:10634-10651. [PMID: 32929371 PMCID: PMC7482811 DOI: 10.7150/thno.44278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Due to the limitations of strategies for its early diagnosis and treatment, pancreatic cancer (PC) remains a substantial human health threat. We previously discovered a methylation-mediated lncRNA, LINC00261, which is downregulated in PC tissues. However, the underlying role of LINC00261 in PC remains largely unknown. Methods: Quantitative real-time PCR and in situ hybridization were performed to evaluate the expression levels of LINC00261 in PC, adjacent nontumor and normal pancreas tissues. The clinical significance of LINC00261 was assessed in multicenter PC samples. The functions of LINC00261 in PC were investigated by gain- and loss-of-function assays in vitro and in vivo. Potential downstream pathways and mechanisms were explored via RNA sequencing and bioinformatic analyses. RNA immunoprecipitation and chromatin immunoprecipitation assays were used to validate the underlying mechanisms. Pyrosequencing and targeted demethylation of the LINC00261 promoter were performed to explore the upstream epigenetic mechanisms and therapeutic potential. Results: LINC00261 was significantly downregulated in PC tissues, and its expression was positively associated with the prognosis of PC patients. Phenotypic studies indicated that LINC00261 overexpression significantly suppressed PC cell proliferation, migration and metastasis in vitro and in vivo. c-Myc was identified as a downstream target of LINC00261. LINC00261 repressed c-Myc transcription by physically interacting and binding with the bromo domain of p300/CBP, preventing the recruitment of p300/CBP to the promoter region of c-Myc and decreasing the H3K27Ac level. Moreover, the methylation level of the LINC00261 promoter was high in PC tissues and was correlated with poor prognosis. Targeted demethylation of the LINC00261 promoter inhibited PC progression both in vitro and in vivo. Conclusions: Our findings indicate that methylation-mediated LINC00261 suppresses PC progression by epigenetically repressing c-Myc expression. These findings expand the therapeutic potential of LINC00261, possibly providing evidence to support the development of epigenetic drugs or therapeutic strategies. This research adds further insights into the etiology of PC and indicates that LINC00261 may be a prognostic and therapeutic target in PC.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis/genetics
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- DNA Methylation
- Disease Progression
- Disease-Free Survival
- Down-Regulation
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Histones/genetics
- Humans
- Male
- Mice
- Middle Aged
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Prognosis
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Transcription, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Yujun Zhang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| | - Jianyou Gu
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Ping Zheng
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Jiejuan Lai
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Liangyu Yin
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Department of Clinical Nutrition, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, P. R. China
| |
Collapse
|
35
|
Cao C, Sun G, Liu C. Long non-coding RNA SNHG6 regulates the sensitivity of prostate cancer cells to paclitaxel by sponging miR-186. Cancer Cell Int 2020; 20:381. [PMID: 32782439 PMCID: PMC7412850 DOI: 10.1186/s12935-020-01462-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chemo-resistance is one of the main obstacles in the treatment of prostate cancer (PCa). Long non-coding RNA small nucleolar RNA host gene 6 (SNHG6) is involved in the chemo-resistance of various tumors. We aim to survey the role and underlying molecular mechanism of SNHG6 in PCa resistance to paclitaxel (PTX). Methods The expression of SNHG6 and miR-186 was detected using quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of PTX-resistant PCa cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), transwell assay, or flow cytometry assay. Protein levels of CyclinD1, matrix metalloproteinase 9 (MMP9), Vimentin, E-cadherin, Cleaved-caspase-3 (Cleaved-casp-3) Cleaved-caspase-9 (Cleaved-casp-9), Multidrug Resistance associated Protein 1 (MRP1), and multidrug resistance-1 (MDR1) were assessed by western blot analysis. The relationship between SNHG6 and miR-186 were confirmed by dual-luciferase reporter assay. The role of SNHG6 in vivo was confirmed by xenograft tumor model. Results SNHG6 expression was increased and miR-186 expression was reduced in drug-resistant PCa tissues and cells. SNHG6 knockdown elevated PTX-resistant PCa cells sensitivity to PTX in vitro and in vivo, and repressed proliferation, migration, and invasion of PTX-resistant PCa cells in vitro. Importantly, SNHG6 acted as a sponge of miR-186. Furthermore, miR-186 downregulation reversed SNHG6 silencing-mediated cell sensitivity to PTX, proliferation, migration, and invasion in PTX-resistant PCa cells. Conclusions SNHG6 knockdown elevated the sensitivity of PTX-resistant PCa cells to PTX by sponging miR-186, indicating that SNHG6 might be a therapeutic target for PCa.
Collapse
Affiliation(s)
- Chunhui Cao
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Guanghai Sun
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Chunlin Liu
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| |
Collapse
|
36
|
Cho H, Li Y, Archacki S, Wang F, Yu G, Chakrabarti S, Guo Y, Chen Q, Wang QK. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease. RNA Biol 2020; 17:1391-1401. [PMID: 32602777 DOI: 10.1080/15476286.2020.1771519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each gene typically has multiple alternatively spliced transcripts. Different transcripts are assumed to play a similar biological role; however, some transcripts may simply lose their function due to loss of important functional domains. Here, we show that two different transcripts of lncRNA gene ANRIL associated with coronary artery disease (CAD) play antagonizing roles against each other. We previously reported that DQ485454, the short transcript, is downregulated in coronary arteries from CAD patients, and reduces monocyte adhesion to endothelial cells (ECs) and transendothelial monocyte migration (TEM). Interestingly, the longest transcript NR_003529 is significantly upregulated in coronary arteries from CAD patients. Overexpression of ANRIL transcript NR_003529 increases monocyte adhesion to ECs and TEM, whereas knockdown of NR_003529 expression reduces monocyte adhesion to ECs and TEM. Much more dramatic effects were observed for the combination of overexpression of NR_003529 and knockdown of DQ485454 or the combination of knockdown of NR_003529 and overexpression of DQ485454. The antagonizing effects of ANRIL transcripts NR_003529 and DQ485454 were associated with their opposite effects on expression of downstream target genes EZR, CXCL11 or TMEM106B. Our results demonstrate that different transcripts of lncRNA can exert antagonizing effects on biological functions, thereby providing important insights into the biology of lncRNA. The data further support the hypothesis that ANRIL is the causative gene at the 9p21 CAD susceptibility locus.
Collapse
Affiliation(s)
- Hyosuk Cho
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yabo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Stephen Archacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Gang Yu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology , Wuhan, P. R. China
| | - Susmita Chakrabarti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Yang Guo
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| | - Qing Kenneth Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, OH, USA
| |
Collapse
|
37
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
38
|
Xu H, Zhang B, Yang Y, Li Z, Zhao P, Wu W, Zhang H, Mao J. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J Cell Mol Med 2020; 24:6362-6372. [PMID: 32319715 PMCID: PMC7294147 DOI: 10.1111/jcmm.15280] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) belongs to the high-grade (IV) gliomas with extremely poor prognosis. Accumulating evidence uncovered the key roles of long non-coding RNAs (lncRNAs) in GBM development. This study aimed to determine the biological actions and the clinical relevance of lncRNA MIR4435-2 Host Gene (MIR4435-2HG) in GBM. Data from GEPIA database showed that MIR4435-2HG was up-regulated in GBM tissues and high expression of MIR4435-2HG correlated with shorter overall survival of GBM patients. Further experimental assays verified the up-regulation of MIR4435-2HG in GBM tissues and cell lines. In vitro cell studies and in vivo animal studies showed that knockdown of MIR4435-2HG resulted in the inhibition of GBM cell proliferation and invasion and in vivo tumour growth, while MIR4435-2HG overexpression driven GBM progression. Furthermore, MIR44435-2HG was found to sponge miR-1224-5p and suppress miR-1224-5p expression; overexpression of miR-1224-5p attenuated the enhancement in GBM cell proliferation and invasion induced by MIR4435-2HG overexpression. In a subsequent study, miR-1224-5p was found to target transforming growth factor-beta receptor type 2 (TGFBR2) and repressed TGFBR2 expression, and in vitro assays showed that miR-1224-5p exerted tumour-suppressive effects via targeting TGFBR2. More importantly, TGFRB2 knockdown antagonized hyper-proliferation and invasion of GBM cells with MIR4435-2HG overexpression. Clinically, the down-regulation of miR-1224-5p and up-regulation of TGFBR2 were verified in the GBM clinical samples. Taken together, the present study suggests the oncogenic role of MIR4435-2HG in GBM and underlies the key function of MIR4435-2HG-driven GBM progression via targeting miR-1224-5p/TGFBR2 axis.
Collapse
Affiliation(s)
- Hongchao Xu
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Beilin Zhang
- Department of NeurologyThe First Teaching Hospital of Jilin UniversityChangchunChina
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncologythe Clinical Innovation& Research Center (CIRC), Shenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityThe First Affiliated Hospital of Southern UniversityShenzhenChina
| | - Zihuang Li
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Pan Zhao
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Weiqing Wu
- Department of Physical ExaminationThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Huirong Zhang
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
- Department of Health managementThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Jie Mao
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
39
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
40
|
Zhou Y, Li X, Yang H. LINC00612 functions as a ceRNA for miR-214-5p to promote the proliferation and invasion of osteosarcoma in vitro and in vivo. Exp Cell Res 2020; 392:112012. [PMID: 32311343 DOI: 10.1016/j.yexcr.2020.112012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 01/31/2023]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators that participate in multiple biological processes, including cancer formation and progression. The biological function and molecular mechanism of LINC00612 in the progression of osteosarcoma has not been elucidated before. In this study, we evaluated the expression of LINC00612 in osteosarcoma by qRT-PCR. ShRNA-induced LINC00612 downregulation and plasmid-transduced LINC00612 overexpression were conducted in U2OS and HOS cells. The in vitro functional effects of LINC00612 downregulation and overexpression on osteosarcoma cells were evaluated by CCK-8 assay, colony formation assay, scratch assay, transwell invasion assay and flow cytometry; in vivo tumor xenografts were conducted in nude mice. The effects of LINC00612 downregulation and overexpression on epithelial-mesenchymal transition (EMT) were assessed by scratch assay, transwell assay and qRT-PCR. The possibility of LINC00612 acting as a competing endogenous RNA (ceRNA) to target microRNA miR-214-5p was examined by dual-luciferase reporter assay. Then, miR-214-5p was downregulated or overexpressed to examine its effect on invasion and SOX4 expression in osteosarcoma cells. LINC00612 was found to be significantly upregulated in osteosarcoma cells and metastatic osteosarcoma. LINC00612 overexpression promoted the proliferation, invasion and in vivo explant growth of osteosarcoma. In addition, LINC00612 overexpression regulated EMT by elevating the expression of ZEB1, Snail, and Fibronectin 1 and inhibiting E-cadherin. MiR-214-5p was confirmed to be a ceRNA of LINC00612. LINC00612 overexpression upregulated SOX4 by inhibiting miR-214-5p. Our study shows that LINC00612 plays an important role in regulating the proliferation and invasion of osteosarcoma by endogenously competing with miR-214-5p and mediating EMT.
Collapse
Affiliation(s)
- Yuelai Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China; Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
41
|
Li P, Duan S, Fu A. Long noncoding RNA NEAT1 correlates with higher disease risk, worse disease condition, decreased miR-124 and miR-125a and predicts poor recurrence-free survival of acute ischemic stroke. J Clin Lab Anal 2019; 34:e23056. [PMID: 31721299 PMCID: PMC7031604 DOI: 10.1002/jcla.23056] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Objective This study aimed to investigate the predictive value of long noncoding RNA nuclear enriched abundant transcript 1 (lncRNA NEAT1) for acute ischemic stroke (AIS) risk and to explore the correlation of lncRNA NEAT1 with disease severity, inflammation, recurrence and target microRNAs in patients with AIS. Methods 210 patients with AIS and 210 controls were enrolled, and their peripheral blood samples were collected within 24 hours after admission and collected on the enrollment, respectively. lncRNA NEAT1 expression was detected by quantitative polymerase chain reaction (qPCR). For patients with AIS, disease severity was evaluated by National Institute of Health Stroke Scale (NIHSS) score; plasma concentrations of inflammatory factors and lncRNA NEAT1 target microRNAs were measured by enzyme‐linked immune sorbent assay and qPCR, respectively; stroke recurrence and death were recorded; and recurrence‐free survival (RFS) was calculated. Results lncRNA NEAT1 expression was elevated in patients with AIS compared with controls, and it had a good predictive value for AIS risk (area under the curve [AUC]: 0.804 [95% confidence interval [CI]: 0.763‐0.845]). In patients with AIS, lncRNA NEAT1 expression positively correlated with NIHSS score and inflammatory factor levels including C‐reactive protein (CRP), tumor necrosis factor (TNF)‐α, interleukin (IL)‐6, IL‐8, and IL‐22, while it negatively correlated with anti‐inflammatory cytokine IL‐10 level. Besides, lncRNA NEAT1 predicted increased recurrence/death risk (AUC: 0.641 [95% CI: 0.541‐0.741]), and its high expression correlated with worse RFS. Additionally, lncRNA NEAT1 expression negatively correlated with microRNA‐124 and microRNA‐125a expressions. Conclusion LncRNA NEAT1 may serve as a novel biomarker for assisting AIS management and prognosis.
Collapse
Affiliation(s)
- Ping Li
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyuan Duan
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adan Fu
- Department of Nursing, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|