1
|
Tirehdast A, Sheikhi-Mohammareh S, Sabet-Sarvestani H, Organ MG, Semeniuchenko V, Shiri A. Design and synthesis of novel main protease inhibitors of COVID-19: quinoxalino[2,1- b]quinazolin-12-ones. RSC Adv 2024; 14:29122-29133. [PMID: 39282064 PMCID: PMC11393744 DOI: 10.1039/d4ra06025c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 pandemic represents a substantial global challenge, being a significant cause of mortality in numerous countries. Thus, it is imperative to conduct research to develop effective therapies to combat COVID-19. The primary aim of this study is to employ a two-step tandem reaction involving 2,3-dichloroquinoxaline and 2-amino-N-substituted benzamides in alkaline media/DMF at an elevated temperature to design and synthesize a series of polycyclic derivatives endowed with quinoxalino[2,1-b]quinazolin-12-one framework. Following synthesis, the newly synthesized heterocycles were evaluated for their potential as inhibitors of the main protease of SARS-CoV-2 by means of molecular docking and dynamic simulation techniques. The in silico investigation demonstrated that all tested compounds effectively establish stable binding interactions, primarily through multiple hydrogen bonding and hydrophobic interactions, at the active site of the enzyme. These findings offer crucial structural insights that can be employed in future endeavors toward designing potent inhibitors targeting the main protease (Mpro). Among the investigated compounds, the p-tolylamino-substituted quinoxalino[2,1-b]quinazolinone derivative exhibited the most promise as an inhibitor of the main protease in COVID-19. Consequently, it warrants further investigation both in vitro and in vivo to identify it as a prospective candidate for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Atefeh Tirehdast
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | | | | | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Volodymyr Semeniuchenko
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa Ottawa Canada
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
2
|
Sheikhi-Mohammareh S, Oroojalian F, Beyzaei H, Moghaddam-Manesh M, Salimi A, Azizollahi F, Shiri A. Domino protocol for the synthesis of diversely functionalized derivatives of a novel fused pentacyclic antioxidant/anticancer fluorescent scaffold: Pyrazolo[5'',1'':2',3']pyrimido[4',5':5,6][1,4]thiazino[2,3-b]quinoxaline. Talanta 2023; 262:124723. [PMID: 37245433 DOI: 10.1016/j.talanta.2023.124723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Rising to the challenge of formidable multi-step reaction needed for the synthesis of polycyclic compounds, an efficient one-pot two-step procedure for the synthesis of densely functionalized novel pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6] [1,4]thiazino[2,3-b]quinoxalines from synthetically accessible starting materials 6-bromo-7-chloro-3-cyano-2-(ethylthio)-5-methylpyrazolo[1,5-a]pyrimidine, 3-aminoquinoxaline-2-thiol and some readily accessible alkyl halides was established. The domino reaction pathway involves cyclocondensation/N-alkylation sequence in K2CO3/N,N-dimethyl formamide under heating condition. DPPH free radical scavenging activity of all synthesized pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6][1,4]thiazino[2,3-b]quinoxalines was evaluated to determine their antioxidant potentials. IC50 values were recorded in the range of 29-71 μM. N-benzyl substituted derivative represented the most effective antioxidant activity as well as antiproliferative activity against MCF-7 cells. Moreover, fluorescence in solution for these compounds exhibited strong red emission in the visible region (λflu. = 536-558 nm) with good to excellent quantum yields (61-95%). Due to their interesting fluorescence properties, these novel pentacyclic fluorophores can be used as fluorescent markers and probes for studies in biochemistry and pharmacology.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Alireza Salimi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Azizollahi
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Moghimi P, Sabet-Sarvestani H, Shiri A. Synthesis, molecular docking and dynamics studies of pyridazino[4,5- b]quinoxalin-1(2 H)-ones as targeting main protease of COVID-19. J Biomol Struct Dyn 2023; 41:13198-13210. [PMID: 36951505 DOI: 10.1080/07391102.2023.2191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/15/2023] [Indexed: 03/24/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a crisis in public health. Because, the 3CLpro, the main protease of SARS-CoV-2, possesses a critical role in coronavirus replication, many efforts have been devoted to developing various inhibitors to prevent the fast spread of COVID-19. In the current work, a number of various pyridazino[4,5-b]quinoxalin-1(2H)-one derivatives bearing thiadiazine and thiadiazole fragments has been prepared via a straightforward and practical strategy involving the reaction of 2-(ethoxycarbonyl)-3-formylquinoxaline 1,4-dioxide with thiocarbohydrazide under reflux conditions. To determine the bioavailability of pyridazino[4,5-b]quinoxalin-1(2H)-one derivatives, Lipinski's rule of five has been carried out. Regarding this rule, none of the synthesized compounds exhibit any deviation from Lipinski's rule of five. Furthermore, molecular docking and molecular dynamics approaches have been implemented to figure out the potential interactions of products with SARS-CoV-2 main protease. The outcomes of molecular docking studies demonstrate that the phenyl and nitrophenyl substituted pyridazino[4,5-b]quinoxalin-1(2H)-one show the lowest binding affinity among the other compounds, indicating a favorable orientation in the active site of the chymotrypsin-like cysteine protease. In addition, the MD simulation performed to evaluate the stability of the protein-ligand complex represents that the average binding energy of the nitrophenyl complex is less than that of the phenyl complex. Therefore, according to the in silico results, the inhibitory effect of the nitrophenyl complex is more significant than the phenyl complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Farzamnezhad I, Sheikhi-Mohammareh S, Beyzaei H, Yarmohammadi E, Shiri A. Synthesis of Novel DPPH-Free Radical Scavenger Se-Containing Fused Chalcogenophenes: 2-Alkyl-7-Cyano-4-Imino-3-Phenyl-6-(pyrrolidin-1-yl)-3,4-Dihydroselenopheno[3,2- d]Pyrimidines. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Iman Farzamnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Elahe Yarmohammadi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Moghimi P, Sabet-Sarvestani H, Kohandel O, Shiri A. Pyrido[1,2- e]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. J Org Chem 2022; 87:3922-3933. [PMID: 35225616 PMCID: PMC8905926 DOI: 10.1021/acs.joc.1c02237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of tricyclic and polycyclic pyrido[1,2-e]purine derivatives were designed and synthesized via a two-step, one-pot reaction of 2,4-dichloro-5-amino-6-methylpyrimidine with pyridine under reflux conditions. Various derivatives of pyrido[1,2-e]purine were also synthesized by substituting the chlorine atom with secondary amines. After careful physiochemical and pharmacokinetic predictions, the inhibitory effects of the synthesized compounds against the main protease of SARS-CoV-2 have been evaluated by molecular docking and molecular dynamics approaches. The in silico results revealed that among all of the studied compounds, the morpholine/piperidine-substituted pyrido[1,2-e]purine derivatives are the best candidates as effective inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | | | - Omid Kohandel
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| |
Collapse
|
6
|
Vatankhah E, Akbarzadeh M, Jabbari A, Saadat K, Shiri A. Synthesis and Characterization of Various Novel Derivatives of Dipyrimido[4,5-b:4',5'-e][1,4]thiazepine and Their Theoretical Evaluation as 15-Lipoxygenase Inhibitor. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2014536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Effat Vatankhah
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marzieh Akbarzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Atena Jabbari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Kohandel O, Sheikhi-Mohammareh S, Oroojalian F, Memariani T, Mague J, Shiri A. A Dimroth rearrangement approach for the synthesis of selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines with cytotoxic activity on breast cancer cells. Mol Divers 2021; 26:1621-1633. [PMID: 34357512 DOI: 10.1007/s11030-021-10290-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
New selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives have been synthesized via Dimroth rearrangement by cyclocondensation of 7-cyano-4-hydrazinyl-6-(pyrrolidin-1-yl)selenopheno[3,2-d]pyrimidine with electrophilic carbons of either orthoesters in acetic acid or carbon disulfide in pyridine followed by S-alkylation. All the newly synthesized products have been structurally elucidated. The in vitro anticancer screening of the tricyclic Se-containing heterocycles was accomplished against human breast carcinoma MCF-7 cancerous cell line and L929 cells. Anticancer results revealed that the S-hexyl-substituted compound with an IC50 value of 158.9 µM in 72 h was foremost among others in cytotoxic potency. In the following order, S-pentyl and S-ethyl-substituted derivatives with IC50 values of 216.1 and 396.5 µM were second and third efficient compounds as in anticancer activity, respectively. The inhibitory effects of the mentioned compounds were less on the growth of L929 cells.
Collapse
Affiliation(s)
- Omid Kohandel
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Toktam Memariani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Joel Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Access to azolopyrimidine-6,7-diamines as a valuable “building-blocks” to develop new fused heteroaromatic systems. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Sheikhi-Mohammareh S, Shiri A, Mague J. Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture. Mol Divers 2021; 26:923-937. [PMID: 33721152 DOI: 10.1007/s11030-021-10203-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 01/16/2023]
Abstract
As a part of our ongoing endeavor towards developing novel heterocyclic architectures, a number of novel Se-containing tricyclic heterocycles of the type [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine have been synthesized through heteroannulation of a newly produced hydrazino derivative of selenazolo[4,5-d]pyrimidine with either orthoesters or carbon disulfide in pyridine followed by S-alkylation. Moreover, the multistep protocol employed in this investigation provides a new insight into the Dimroth rearrangement in both acidic and basic media as a means for the cyclocondensation of triazole on the selenazolopyrimidine framework leading to selenazolotriazolopyrimidines. The synthesis of new derivatives of novel selenazolotriazolopyrimidines via Dimroth rearrangement in both acidic and basic media is presented.
Collapse
Affiliation(s)
| | - Ali Shiri
- Department of Chemistryp, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Joel Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
10
|
Magnetic covalently immobilized nickel complex: A new and efficient method for the Suzuki cross‐coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Bigonah-Rasti S, Sheikhi-Mohammareh S, Saadat K, Shiri A. Novel Tricyclic 2-Alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine Derivatives: Synthesis and Characterization. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Bigonah-Rasti
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Sheikhi‐Mohammareh S, Shiri A, Maleki EH, Matin MM, Beyzaei H, Baranipour P, Oroojalian F, Memariani T. Synthesis of Various Derivatives of [1,3]Selenazolo[4,5‐d]pyrimidine and Exploitation of These Heterocyclic Systems as Antibacterial, Antifungal, and Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ali Shiri
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Ebrahim H. Maleki
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Parviz Baranipour
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies School of Medicine, North Khorasan University of Medical Sciences Bojnurd Iran
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Toktam Memariani
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| |
Collapse
|
13
|
Gazizov DA, Gorbunov EB, Rusinov GL, Ulomsky EN, Charushin VN. A New Family of Fused Azolo[1,5- a]pteridines and Azolo[5,1- b]purines. ACS OMEGA 2020; 5:18226-18233. [PMID: 32743198 PMCID: PMC7391858 DOI: 10.1021/acsomega.0c01849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 05/02/2023]
Abstract
The nitration of azolo[1,5-a]pyrimidin-7-amines with several nitration agents (such as acetic nitric anhydride, nitronium tetrafluoroborate, and a mixture of concentrated nitric acid and sulfuric acid) has been investigated. It has been shown that, depending on the conditions, the nitration of pyrazolopyrimidin-7-amines bearing electron-withdrawing groups in the pyrazole ring leads to nitration products in the pyrimidine and/or pyrazole ring. The nitration of triazolo[1,5-a]pyrimidin-7-amines with "nitrating mixture" has been optimized, thus allowing us to obtain a series of 6-nitro[1,2,4]triazolo[1,5-a]pyrimidin-7-amines, followed by their reduction into the corresponding [1,2,4]triazolo[1,5-a]pyrimidin-6,7-diamines (yields 86-89%). The latter have been subjected to heterocyclization by a variety of electrophilic compounds (such as CS2, glyoxal, triethyl orthoformate) with the formation of five- or six-membered annulated cycles.
Collapse
Affiliation(s)
- Denis A. Gazizov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Evgeny B. Gorbunov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Gennady L. Rusinov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Evgeny N. Ulomsky
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| |
Collapse
|
14
|
Robust approach leading to novel densely functionalized four-cyclic benzo[e]pyrazolo[5′,1′:2,3]pyrimido[4,5-b][1,4]diazepines with antibacterial activity toward resistant strains. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01875-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
New efficient design and synthesis of novel antioxidant and antifungal 7-imino[1,3]selenazolo[4,5-d]pyrimidine-5(4H)-thiones utilizing a base-promoted cascade addition/cyclization sequence. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02617-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|