1
|
Das A, Ray D, Ashraf MW, Banik BK. Microwave-Induced Synthesis of Bioactive Nitrogen Heterocycles. Curr Top Med Chem 2025; 25:554-580. [PMID: 39162268 DOI: 10.2174/0115680266315936240807101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
There are many different applications of heterocyclic molecules in pharmaceutical and materials science, which make them an important family of compounds. Among these heterocyclic compounds, nitrogen-containing heterocyclic (N-heterocyclic) compounds have attracted a lot of interest among researchers due to their various applications across a wide variety of fields. Many studies have been performed over the past few years to study the synthesis of N-heterocycles under different reaction conditions, such as solvent-free, catalytic conditions, reactants immobilized on a solid support, one-pot synthesis, and microwave irradiation. Our research group has demonstrated that microwaves can be utilized for rapid and efficient synthesis of biologically active compounds. In this review, we provide an overview of the microwave-assisted non-catalytic and catalytic preparation of nitrogen-containing heterocycles, mostly polycyclic N-heterocycles, five-membered Nheterocycles, six-membered N-heterocycles, and fused N-heterocycles. In this review, we explore the microwave-assisted preparation of biologically important compounds, such as pyrimidines, thiazoles, imines, tetrazoles, steroidal derivatives, quinolines, indolizine, triazoles, beta-lactams, pyrroles, and quinoxalines.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, J3 Block AICCRS Sec 125 Noida Uttar Pradesh, 201313, India
- Amity Institute of Click Chemistry Research and Studies, Amity University, J1 Block AICCRS Sec 125 Noida Uttar Pradesh India 201313, India
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Laghchioua F, da Silva CFM, Pinto DCGA, Cavaleiro JA, Mendes RF, Paz FAA, Faustino MAF, Rakib EM, Neves MGPMS, Pereira F, Moura NMM. Design of Promising Thiazoloindazole-Based Acetylcholinesterase Inhibitors Guided by Molecular Docking and Experimental Insights. ACS Chem Neurosci 2024; 15:2853-2869. [PMID: 39037949 PMCID: PMC11311138 DOI: 10.1021/acschemneuro.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 μM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 μM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Collapse
Affiliation(s)
- Fatima
Ezzahra Laghchioua
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Carlos F. M. da Silva
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.
S. Cavaleiro
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - El Mostapha Rakib
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Higher
School of Technology, Sultan Moulay Slimane
University, BP 336, Fkih Ben Salah, Morocco
| | | | - Florbela Pereira
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Rajput K, Singh V, Mahaur P, Singh S, Srivastava V. Visible-light-induced C-S bond formation in the synthesis of 2,4-disubstituted thiazoles through cascade difunctionalization of acetophenone: a greener approach. Org Biomol Chem 2024; 22:2774-2779. [PMID: 38497383 DOI: 10.1039/d4ob00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A groundbreaking approach has been developed for synthesizing 2,4-disubstituted thiazoles using an eco-friendly and metal-free approach. This novel method utilizes methyl aryl ketones, N-bromo-succinimide (NBS), and thioamides in water as a green reaction medium under visible light irradiation. Using NBS as a bromine source, the reaction takes place through an in situ α-bromination method. This approach does not require any catalyst, which makes it exceptionally beneficial for the environment. The advantages of this efficient approach are manifold and include the use of greener conditions, absence of metals, easy isolation of products, cost-effectiveness, non-toxicity, and reliance on renewable energy sources like visible light. Moreover, this technique offers higher product purity and excellent yield, enhancing itsappeal.
Collapse
Affiliation(s)
- Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Priya Mahaur
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221 005, U.P., India.
| |
Collapse
|
4
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Niedziałkowska K, Felczak A, Głowacka IE, Piotrowska DG, Lisowska K. Antimicrobial Activity and Toxicity of Newly Synthesized 4-[4-(benzylamino)butoxy]-9 H-carbazole Derivatives. Int J Mol Sci 2023; 24:13722. [PMID: 37762024 PMCID: PMC10530720 DOI: 10.3390/ijms241813722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
One of the main challenges of medicinal chemistry is the search for new substances with antimicrobial potential that could be used in the fight against pathogenic microorganisms. Therefore, the antimicrobial activity of newly synthesized compounds is still being investigated. Carbazole-containing compounds appear to be promising antibacterial, antifungal, and antiviral agents. The aim of this study was to examine the antimicrobial potential and toxicity of newly synthesized isomeric fluorinated 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives. Their antimicrobial activity against bacteria and fungi was tested according to CLSI guidelines. Similarly to previously studied carbazole-containing compounds, the tested derivatives showed the ability to effectively inhibit the growth of Gram-positive bacteria. The addition of carbazole derivatives 2, 4, and 8 at the concentration of 16 µg/mL caused the inhibition of S. aureus growth by over 60%. The MIC value of compounds 2-5 and 7-10 was 32 µg/mL for Staphylococcus strains. Gram-negative strains of E. coli and P. aeruginosa were found to be more resistant to the tested carbazole derivatives. E. coli cells treated with compounds 3 and 8 at a concentration of 64 µg/mL resulted in a greater-than-40% reduction in bacterial growth. In the case of the P. aeruginosa strain, all compounds in the highest concentration that we tested limited growth by 35-42%. Moreover, an over-60% inhibition of fungal growth was observed in the cultures of C. albicans and A. flavus incubated with 64 µg/mL of compounds 2 or 7 and 1 or 4, respectively. The hemolysis of red blood cells after their incubation with the tested carbazole derivatives was in the range of 2-13%. In the case of human fibroblast cells, the toxicity of the tested compounds was higher. Derivative 1, functionalized with fluorine in position 2 and its hydrobromide, was the least toxic. The obtained results indicated the antimicrobial potential of the tested 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives, especially against S. aureus strains; therefore, it is worth further modifying these structures, in order to enhance their activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| |
Collapse
|
6
|
Patil SA, Patil SA, Ble-González EA, Isbel SR, Hampton SM, Bugarin A. Carbazole Derivatives as Potential Antimicrobial Agents. Molecules 2022; 27:molecules27196575. [PMID: 36235110 PMCID: PMC9573399 DOI: 10.3390/molecules27196575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial infection is a leading cause of death worldwide, resulting in around 1.2 million deaths annually. Due to this, medicinal chemists are continuously searching for new or improved alternatives to combat microbial infections. Among many nitrogen-containing heterocycles, carbazole derivatives have shown significant biological activities, of which its antimicrobial and antifungal activities are the most studied. In this review, miscellaneous carbazole derivatives and their antimicrobial activity are discussed (articles published from 1999 to 2022).
Collapse
Affiliation(s)
- Siddappa A. Patil
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| | - Ever A. Ble-González
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Stephen R. Isbel
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Sydney M. Hampton
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| |
Collapse
|
7
|
Zawadzka K, Felczak A, Głowacka IE, Piotrowska DG, Lisowska K. Evaluation of the Antimicrobial Potential and Toxicity of a Newly Synthesised 4-(4-(Benzylamino)butoxy)-9 H-carbazole. Int J Mol Sci 2021; 22:ijms222312796. [PMID: 34884610 PMCID: PMC8657542 DOI: 10.3390/ijms222312796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
One of the greatest threats to human and animal health is posed by infections caused by drug-resistant bacterial strains. Therefore, newly synthesised substances are tested for their antimicrobial activity. Carbazole derivatives seem to be promising antibacterial agents. This study aimed at investigating the toxicity and activity of newly synthesised, functionalised carbazole derivative 2 (4-(4-(benzylamino)butoxy)-9H-carbazole) against various microorganisms. Its antimicrobial potential against Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi was examined according to CLSI (Clinical and Laboratory Standards Institute) standards. The tested compound was found to efficiently inhibit the growth of Gram-positive strains. The addition of carbazole derivative 2 at the concentration of 30 µg/mL caused inhibition of bacterial growth by over 95%. Moreover, about 50 and 45% limitation of Pseudomonas aeruginosa and Aspergillus flavus growth was observed in the samples incubated with the addition of 20 and 60 µg/mL of the compound, respectively. Its addition to the microbial cultures caused an increase in the permeability of the cellular membrane. Slight haemolysis of red blood cells was observed after 24-h treatment with carbazole derivative 2. On the other hand, human fibroblasts were found to be more sensitive to its effects. The activity of the tested compound indicates a possibility of its further modification in order to obtain effective drugs, especially against drug-resistant staphylococci.
Collapse
Affiliation(s)
- Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
- Correspondence: ; Tel.: +48-426354500
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| |
Collapse
|
8
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Wang KK, Li YL, Guo DG, Pan PT, Sun A, Chen R. Synthesis of spiro[4.4]thiadiazole derivatives via double 1,3-dipolar cycloaddition of hydrazonyl chlorides with carbon disulfide. RSC Adv 2021; 11:18404-18407. [PMID: 35480901 PMCID: PMC9033500 DOI: 10.1039/d1ra03229a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
An operationally simple and convenient synthesis method toward a series of diverse spiro[4.4]thiadiazole derivatives via double [3 + 2] 1,3-dipolar cycloaddition of nitrilimines generated in situ from hydrazonyl chlorides with carbon disulfide has been achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| | - Yan-Li Li
- Medical College, Xinxiang University Xinxiang 453000 P. R. China
| | - Dong-Guang Guo
- School of Life Sciences and Basic Medicine, Xinxiang University Xinxiang 453000 P. R. China
| | - Peng-Tao Pan
- Medical College, Xinxiang University Xinxiang 453000 P. R. China
| | - Aili Sun
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| | - Rongxiang Chen
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| |
Collapse
|
10
|
Kassem AF, Alshehrei F, Abbas EMH, Farghaly TA. Synthesis of Azoloquinazolines and Substituted Benzothiazepine as Antimicrobial Agents. Mini Rev Med Chem 2020; 20:418-429. [PMID: 31161988 DOI: 10.2174/1389557519666190603091101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND & OBJECTIVE Quinazolines and their fused systems are noteworthy in pharmaceutical chemistry due to their wide range of biological activities. METHODS A direct and efficient approach for the synthesis of new series of fused quinazolines with triazole, thiazole, benzimidazole and tetrazole has been preceded via the reaction of quinazoline thione derivative with halogenated compounds or cyclocondensation of arylidene of quinazoline derivative with heterocyclic amines. Also, dibenzo[b,e][1,4]thiazepine derivatives was synthesized through the reaction of 2,6-bis-(2-chloro-benzylidene)-cyclohexanone with o-aminothiophenol. RESULTS The structures of all new synthesized heterocyclic compounds were confirmed and discussed on the bases of spectral data. The utility of the preparation and design of the above mentioned compounds has been shown to be clear in the results of their antimicrobial activity which revealed that some derivatives have potent activity exceeding or similar to the activity of the reference drugs. CONCLUSION The insertion of triazole or thiazole moieties to be fused with quinazoline ring helps to enhance its antimicrobial activity.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, 33 El Bohouth St. (Former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| | - Fatimah Alshehrei
- Department of Biology, Jumom College, Umm Al-Qura University, P.O Box 7388, Makkah, 21955, Saudi Arabia
| | - Eman M H Abbas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, 33 El Bohouth St. (Former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| |
Collapse
|
11
|
Shaaban MR, Farghaly TA, Alsaedi AMR. Synthesis, Antimicrobial and Anticancer Evaluations of Novel Thiazoles Incorporated Diphenyl Sulfone Moiety. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1837887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed R. Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah al-Mukarramah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah al-Mukarramah, Saudi Arabia
| | - Amani M. R. Alsaedi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah al-Mukarramah, Saudi Arabia
| |
Collapse
|
12
|
Bondock S, Nasr T, Alqahtanti S. Synthesis and In Vitro Antitumor Evaluation of Some Carbazole‐Based Thiazole, Thiophene, and 1,3,4‐Thiadiazole Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202002912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samir Bondock
- Department of Chemistry Faculty of Science King Khalid University 9004 Abha Saudi Arabia
- Department of Chemistry Faculty of Science Mansoura University ET 35516 Mansoura Egypt
| | - Tamer Nasr
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Helwan University 11795 Helwan Cairo Egypt
| | - Salwa Alqahtanti
- Department of Chemistry Faculty of Science and Arts King Khalid University Sarat Abidah Saudi Arabia
| |
Collapse
|
13
|
Sayed AR, Ali SH, Gomha SM, Al-Faiyz YS. Review of the synthesis and biological activity of hydrazonoyl halides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1799016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, King Faisal University, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sukinah H. Ali
- Department of Chemistry, Faculty of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, Saudi Arabia
| | - Yasair S. Al-Faiyz
- Department of Chemistry, Faculty of Science, King Faisal University, Hofuf, Saudi Arabia
| |
Collapse
|
14
|
Bayazeed A, Alshehrei F, Muhammad ZA, Al‐Fahemi J, El‐Metwaly N, Farghaly TA. Synthesis of Coumarin‐Analogues: Analytical, Spectral, Conformational, MOE‐Docking and Antimicrobial Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.201904724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Abrar Bayazeed
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
| | - Fatimah Alshehrei
- Department of BiologyJumom collegeUmm Al-Qura University P.O Box 7388 Makkah 21955 Saudi Arabia
| | - Zeinab A. Muhammad
- National Organization for Drug Control and Research (NODCAR) P.O. Box 29 Cairo Egypt
| | - Jabir Al‐Fahemi
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
| | - Nashwa El‐Metwaly
- Chemistry DepartmentFaculty of Applied SciencesUmm Al-Qura University Makkah Saudi Arabia
- Chemistry DepartmentFaculty of ScienceMansoura University Mansoura Egypt
| | | |
Collapse
|
15
|
Althagafi I, Farghaly TA, Abbas EMH, Harras MF. Benzosuberone as Precursor for Synthesis of Antimicrobial Agents: Synthesis, Antimicrobial Activity, and Molecular Docking. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1692877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ismail Althagafi
- Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Eman M. H. Abbas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Giza, Egypt
| | - Marwa F. Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|