1
|
Maurya MR, Maurya SK, Kumar N, Avecilla F. Nonoxidovanadium(IV) Complex-Catalyzed Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes, Biscoumarins, and Xanthenes under Green Conditions. J Org Chem 2024; 89:12143-12158. [PMID: 39177312 DOI: 10.1021/acs.joc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Reaction of [VIVO(acac)2] (Hacac = acetylacetone) with a Mannich base, N,N,N',N'-tetrakis(2-hydroxy-3,5-di-tert-butyl benzyl)-1,2-diaminoethane (H4L, I) in a 1:1 molar ratio in MeOH, leads to the formation of the nonoxidovanadium(IV) complex [VIVL] (1). Air stable complex 1 has been characterized using various spectroscopic techniques, DFT calculations, and single-crystal X-ray studies. 1 adopts distorted octahedral geometry where ligand coordinates through all coordination functionalities available. This complex has been used as a catalyst in the one-pot, three-component synthesis of 2-amino-3-cyano-4H-pyrans using 1,3-dicarbonyls (1,3-cyclohexanedione, dimedone, barbituric acid, and 4-hydroxycoumarin), malononitrile, and various substituted aromatic aldehydes in equimolar amounts employing ethanol as a green solvent. The catalytic reaction revealed that the multicomponent synthesis of 4H-pyrans and chromenes is greatly influenced by both types of 1,3-dicarbonyl compound employed and the nature of the substituent on the aromatic ring of the aldehyde. Synthesized catalyst has also been used in the synthesis of pharmacologically relevant oxygen-containing heterocycles, specifically, 1,8-dioxo-octahydro-1H-xanthenes and biscoumarins. The possible mechanism for the synthesized one-pot, multicomponent product has been proposed by isolating intermediate(s) generated during synthesis.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailendra K Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruna, A Coruna 15071, Spain
| |
Collapse
|
2
|
Maurya MR, Kumar N, Avecilla F. Controlled Modification of Triaminoguanidine-Based μ 3 Ligands in Multinuclear [V IVO]/[V VO 2] Complexes and Their Catalytic Potential in the Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes. Inorg Chem 2024; 63:2505-2524. [PMID: 38243891 DOI: 10.1021/acs.inorgchem.3c03704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Reaction of tris(2-hydroxybenzylidene)-triaminoguanidinium chloride (I·HCl) and tris(5-bromo-2-hydroxybenzylidene)-triaminoguanidinium chloride (II·HCl) with [VIVO(acac)2] (1:1 molar ratio) in refluxing methanol resulted in mononuclear [VIVO] complexes, [VIVO(H2L1')(MeOH)] (1) and [VIVO(H2L2')(MeOH)] (2), respectively, where I and II undergo intramolecular triazole ring formation. Aerial oxidation of 1 and 2 in MeOH in the presence of Cs2CO3 gave corresponding cis-[VVO2] complexes Cs[(VO2)(H2L1')] (3) and Cs[(VO2)(H2L2')] (4). However, reaction of an aerially oxidized methanolic solution of [VIVO(acac)2] with I·HCl and II·HCl in the presence of Cs2CO3 (in 1:1:1 molar ratio) gave mononuclear complexes Cs[(VO2)(H3L1)] (5) and Cs[(VO2)(H3L2)] (6) without intramolecular triazole ring formation. Similar anionic trinuclear complexes Cs2[(VO2)3(L1)] (7) and Cs2[(VO2)3(L2)] (8) were isolable upon increasing the amounts of the vanadium precursor and Cs2CO3 to 3 equiv to the reaction applied for 5 and 6. Keeping the reaction mixture of 1 in MeOH under air gave [VVO(H2L1')(OMe)] (9). Structures of 3, 7, 8, and 9 were confirmed by X-ray crystal structure study. A permanent porosity in the crystalline metal-organic framework of 7 confirmed by single-crystal X-ray investigation was further verified by the BET study. Along with a suitable reaction mechanism, these synthesized compounds were explored as effective catalysts for the synthesis of biomolecules 4H-pyran/4H-chromenes.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| |
Collapse
|
3
|
Bis-thiobarbiturates as Promising Xanthine Oxidase Inhibitors: Synthesis and Biological Evaluation. Biomedicines 2021; 9:biomedicines9101443. [PMID: 34680559 PMCID: PMC8533253 DOI: 10.3390/biomedicines9101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Xanthine oxidase (XO) is the enzyme responsible for the conversion of endogenous purines into uric acid. Therefore, this enzyme has been associated with pathological conditions caused by hyperuricemia, such as the disease commonly known as gout. Barbiturates and their congeners thiobarbiturates represent a class of heterocyclic drugs capable of influencing neurotransmission. However, in recent years a very large group of potential pharmaceutical and medicinal applications have been related to their structure. This great diversity of biological activities is directly linked to the enormous opportunities found for chemical change off the back of these findings. With this in mind, sixteen bis-thiobarbiturates were synthesized in moderate to excellent reactional yields, and their antioxidant, anti-proliferative, and XO inhibitory activity were evaluated. In general, all bis-thiobarbiturates present a good antioxidant performance and an excellent ability to inhibit XO at a concentration of 30 µM, eight of them are superior to those observed with the reference drug allopurinol (Allo), nevertheless they were not as effective as febuxostat. The most powerful bis-thiobarbiturate within this set showed in vitro IC50 of 1.79 μM, which was about ten-fold better than Allo inhibition, together with suitable low cytotoxicity. In silico molecular properties such as drug-likeness, pharmacokinetics, and toxicity of this promising barbiturate were also analyzed and herein discussed.
Collapse
|
4
|
Karges J, Heinemann F, Maschietto F, Patra M, Blacque O, Ciofini I, Spingler B, Gasser G. A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorg Med Chem 2019; 27:2666-2675. [PMID: 31103403 DOI: 10.1016/j.bmc.2019.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
The use of Photodynamic Therapy (PDT) for the treatment of several kinds of cancer as well as bacterial, fungal or viral infections has received increasing attention during the last decade. However, the currently clinically approved photosensitizers (PSs) have several drawbacks, including photobleaching, slow clearance from the organism and poor water solubility. To overcome these shortcomings, many efforts have been made in the development of new types of PSs, such as Ru(II) polypyridyl complexes. Nevertheless, most studied Ru(II) polypyridyl complexes have a low absorbance in the spectral therapeutic window. In this work, we show that, by carefully selecting substituents on the polypyridyl complex, it is possible to prepare a complex absorbing at a much higher wavelength. Specifically, we report on the synthesis as well as in-depth experimental and theoretical characterisation of a Ru(II) polypyridyl complex (complex 3) combining a shift in absorbance towards the spectral therapeutic window with a high 1O2 production. To overcome the absence or poor selectivity of most approved PSs into targeted cells/bacteria, they can be linked to targeting moieties. In this line, compound 3 was designed with reactive aldehyde groups, which can be used as a highly versatile synthetic precursor for further conjugation. As a proof of concept, 3 was reacted with benzylamine and the stability of the resulting conjugate 4 was investigated in DMSO, PBS and cell media. 4 showed an impressive ability to act as a PDT PS with no measurable dark cytotoxicity and photocytotoxicity in the low micromolar range against cancerous HeLa cells from 450 nm up to 540 nm.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Franz Heinemann
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Federica Maschietto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
5
|
Synthesis of Pyrazole-Thiobarbituric Acid Derivatives: Antimicrobial Activity and Docking Studies. Molecules 2016; 21:molecules21101337. [PMID: 27735850 PMCID: PMC6274314 DOI: 10.3390/molecules21101337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
A one-pot reaction was described that results in various pyrazole-thiobarbituric acid derivatives as new pharmacophore agents. These new heterocycles were synthesized in high yields with a broad substrate scope under mild reaction conditions in water mediated by NHEt2. The molecular structures of the synthesized compounds were assigned based on different spectroscopic techniques. The new compounds were evaluated for their antibacterial and antifungal activity. Compounds 4h and 4l were the most active compounds against C. albicans with MIC = 4 µg/L. Compound 4c exhibited the best activity against S. aureus and E. faecalis with MIC = 16 µg/L. However, compounds 4l and 4o were the most active against B. subtilis with MIC = 16 µg/L. Molecular docking studies for the final compounds and standard drugs were performed using the OpenEye program.
Collapse
|
6
|
Barakat A, Al-Majid AM, Al-Ghamdi AM, Mabkhot YN, Rafiq Hussain Siddiqui M, Ghabbour HA, Fun HK. Tandem Aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to dimedone-barbituric acid derivatives. Chem Cent J 2014; 8:9. [PMID: 24485059 PMCID: PMC3924718 DOI: 10.1186/1752-153x-8-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/28/2014] [Indexed: 11/15/2022] Open
Abstract
Background Green chemistry is a rapidly developing new field that provides us with a proactive avenue for the sustainable development of future science and technologies. Green chemistry uses highly efficient and environmentally benign synthetic protocols to deliver lifesaving medicines, accelerating lead optimization processes in drug discovery, with reduced unnecessary environmental impact. From this view point, it is desirable to use water instead of organic solvents as a reaction medium, since water is safe, abundant and an environmentally benign solvent. Results A convenient one-pot method for the efficient synthesis of the novel Zwitterion derivatives 4a-pvia a three-component condensation reaction of barbituric acid derivatives 1a,b, dimedone 2, and various aldehydes 3 in the presence of aqueous diethylamine media is described. This new approach is environmentally benign, with clean synthetic procedure, short reaction times and easy work-up procedure which proceeded smoothly to provide excellent yield (88-98%). The synthesized products were characterized by elemental analysis, IR, MS, NMR and CHN analysis. The structure of 4a was further confirmed by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pbca with α = 14.6669 (5) Å, b = 18.3084 (6) Å, c = 19.0294 (6) Å, α = 90°, β = 90°, = 90°, V = 5109.9 (3) Å3, and Z = 8. The molecules are packed in crystal structure by weak intermolecular C–H⋅ ⋅ ⋅O hydrogen bonding interactions. Conclusions An environmentally benign Aldol-Michael protocol for the synthesis of dimedone-barbituric derivatives using aqueous diethylamine medium is achieved.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P,O, Box 2455, Riyadh 11451, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Saravanan C, Easwaramoorthi S, Wang L. Colorimetric detection of fluoride ion by 5-arylidenebarbituric acids: dual interaction mode for fluoride ion with single receptor. Dalton Trans 2014; 43:5151-7. [DOI: 10.1039/c3dt52824c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Neumann DM, Cammarata A, Backes G, Palmer GE, Jursic BS. Synthesis and antifungal activity of substituted 2,4,6-pyrimidinetrione carbaldehyde hydrazones. Bioorg Med Chem 2013; 22:813-26. [PMID: 24361188 DOI: 10.1016/j.bmc.2013.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
Opportunistic fungal infections caused by the Candida spp. are the most common human fungal infections, often resulting in severe systemic infections-a significant cause of morbidity and mortality in at-risk populations. Azole antifungals remain the mainstay of antifungal treatment for candidiasis, however development of clinical resistance to azoles by Candida spp. limits the drugs' efficacy and highlights the need for discovery of novel therapeutics. Recently, it has been reported that simple hydrazone derivatives have the capability to potentiate antifungal activities in vitro. Similarly, pyrimidinetrione analogs have long been explored by medicinal chemists as potential therapeutics, with more recent focus being on the potential for pyrimidinetrione antimicrobial activity. In this work, we present the synthesis of a class of novel hydrazone-pyrimidinetrione analogs using novel synthetic procedures. In addition, structure-activity relationship studies focusing on fungal growth inhibition were also performed against two clinically significant fungal pathogens. A number of derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10μM with minimal mammalian cell toxicity. In addition, in vitro studies aimed at defining the mechanism of action of the most active analogs provide preliminary evidence that these compound decrease energy production and fungal cell respiration, making this class of analogs promising novel therapies, as they target pathways not targeted by currently available antifungals.
Collapse
Affiliation(s)
- Donna M Neumann
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States; Department of Ophthalmology, LSUHSC, New Orleans, United States.
| | - Amy Cammarata
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States
| | - Gregory Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States
| | - Glen E Palmer
- Department of Microbiology, Immunology and Parasitology, LSUHSC-New Orleans, United States
| | - Branko S Jursic
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, United States; STEPHARM, LLC., P.O. Box 24220, New Orleans, LA 70184, United States
| |
Collapse
|
9
|
Al-Majid AM, Barakat A, AL-Najjar HJ, Mabkhot YN, Ghabbour HA, Fun HK. Tandem aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to bis-pyrimidine derivatives. Int J Mol Sci 2013; 14:23762-73. [PMID: 24317435 PMCID: PMC3876076 DOI: 10.3390/ijms141223762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022] Open
Abstract
A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%).
Collapse
Affiliation(s)
- Abdullah M. Al-Majid
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: (A.M.A.-M.); (H.J.A.-N.); (Y.N.M.)
| | - Assem Barakat
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: (A.M.A.-M.); (H.J.A.-N.); (Y.N.M.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426-Ibrahimia, Alexandria 21321, Egypt
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-1467-5884; Fax: +966-1467-5992
| | - Hany J. AL-Najjar
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: (A.M.A.-M.); (H.J.A.-N.); (Y.N.M.)
| | - Yahia N. Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: (A.M.A.-M.); (H.J.A.-N.); (Y.N.M.)
| | - Hazem A. Ghabbour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mails: (H.A.G.); (H.-K.F.)
| | - Hoong-Kun Fun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mails: (H.A.G.); (H.-K.F.)
| |
Collapse
|
10
|
Jursic BS, Stevens ED. Preparation of Nitrogen Heterocycles of Spiro[Furo[2,3‐d]‐Pyrimidine]Pyrimidine Derivatives. SYNTHETIC COMMUN 2011. [DOI: 10.1081/scc-200034786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Branko S. Jursic
- a Department of Chemistry , University of New Orleans , New Orleans, Louisiana, 70148, USA
| | - Edwin D. Stevens
- a Department of Chemistry , University of New Orleans , New Orleans, Louisiana, 70148, USA
| |
Collapse
|