1
|
Fatima S, Zaki A, Madhav H, Khatoon BS, Rahman A, Manhas MW, Hoda N, Ali SM. Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents. RSC Adv 2023; 13:19119-19129. [PMID: 37383684 PMCID: PMC10294549 DOI: 10.1039/d3ra01893h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Here, we outline the synthesis of a few 2-methoxy-6-((4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)(phenyl)methyl)phenol derivatives and assess their anti-inflammatory activity in macrophage cells that have been stimulated by LPS. Among these newly synthesized morpholinopyrimidine derivatives, 2-methoxy-6-((4-methoxyphenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)phenol (V4) and 2-((4-fluorophenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)-6-methoxyphenol (V8) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our findings also showed that compounds V4 and V8 dramatically reduced iNOS and cyclooxygenase mRNA expression (COX-2) in LPS-stimulated RAW 264.7 macrophage cells; western blot analysis showed that the test compounds decreased the amount of iNOS and COX-2 protein expression, hence inhibiting the inflammatory response. We find through molecular docking studies that the chemicals had a strong affinity for the iNOS and COX-2 active sites and formed hydrophobic interactions with them. Therefore, use of these compounds could be suggested as a novel therapeutic strategy for inflammation-associated disorders.
Collapse
Affiliation(s)
- Sadaf Fatima
- Drug Design and Synthesis Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi 110025 India
- Translational Research Lab, Department of Biotechnology Jamia Millia Islamia New Delhi 110025 India
| | - Almaz Zaki
- Translational Research Lab, Department of Biotechnology Jamia Millia Islamia New Delhi 110025 India
- Department of Biosciences Jamia Millia Islamia New Delhi 110025 India
| | - Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi 110025 India
| | - Bibi Shaguftah Khatoon
- Drug Design and Synthesis Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi 110025 India
- Department of Applied Chemistry, Amity University Gurugram 122413 Haryana India
| | - Abdur Rahman
- Drug Design and Synthesis Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi 110025 India
| | - Mohd Wasif Manhas
- Translational Research Lab, Department of Biotechnology Jamia Millia Islamia New Delhi 110025 India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry Jamia Millia Islamia New Delhi 110025 India
| | - Syed Mansoor Ali
- Translational Research Lab, Department of Biotechnology Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
2
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
3
|
Cyanomethylation of 2,3,4,9-tetrahydro-1H-carbazol-1-one based on using two different reagents: Antioxidant activity and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kutkat O, Kandeil A, Moatasim Y, Elshaier YAMM, El-Sayed WA, Gaballah ST, El Taweel A, Kamel MN, El Sayes M, Ramadan MA, El-Shesheny R, Abdel-Megeid FME, Webby R, Kayali G, Ali MA. In Vitro and In Vivo Antiviral Studies of New Heteroannulated 1,2,3-Triazole Glycosides Targeting the Neuraminidase of Influenza A Viruses. Pharmaceuticals (Basel) 2022; 15:ph15030351. [PMID: 35337148 PMCID: PMC8950700 DOI: 10.3390/ph15030351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need to develop and synthesize new anti-influenza drugs with activity against different strains, resistance to mutations, and suitability for various populations. Herein, we tested in vitro and in vivo the antiviral activity of new 1,2,3-triazole glycosides incorporating benzimidazole, benzooxazole, or benzotriazole cores synthesized by using a click approach. The Cu-catalyzation strategy consisted of 1,3-dipolar cycloaddition of the azidoalkyl derivative of the respective heterocyclic and different glycosyl acetylenes with five or six carbon sugar moieties. The antiviral activity of the synthesized glycosides against wild-type and neuraminidase inhibitor resistant strains of the avian influenza H5N1 and human influenza H1N1 viruses was high in vitro and in mice. Structure–activity relationship studies showed that varying the glycosyl moiety in the synthesized glycosides enhanced antiviral activity. The compound (2R,3R,4S,5R)-2-((1-(Benzo[d]thiazol-2-ylmethyl)-1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (Compound 9c) had a 50% inhibitory concentration (IC50) = 2.280 µM and a ligand lipophilic efficiency (LLE) of 6.84. The compound (2R,3R,4S,5R)-2-((1-((1H-Benzo[d]imidazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate had IC50 = 2.75 µM and LLE = 7.3 after docking analysis with the H5N1 virus neuraminidase. Compound 9c achieved full protection from H1N1 infection and 80% protection from H5N1 in addition to a high binding energy with neuraminidase and was safe in vitro and in vivo. This compound is suitable for further clinical studies as a new neuraminidase inhibitor.
Collapse
Affiliation(s)
- Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Correspondence: (A.K.); (G.K.); (M.A.A.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt;
| | - Wael A. El-Sayed
- Photochemistry Department, National Research Centre, Giza 12622, Egypt; (W.A.E.-S.); (S.T.G.); (F.M.E.A.-M.)
- Department of Chemistry, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Samir T. Gaballah
- Photochemistry Department, National Research Centre, Giza 12622, Egypt; (W.A.E.-S.); (S.T.G.); (F.M.E.A.-M.)
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mohammed A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Farouk M. E. Abdel-Megeid
- Photochemistry Department, National Research Centre, Giza 12622, Egypt; (W.A.E.-S.); (S.T.G.); (F.M.E.A.-M.)
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Ghazi Kayali
- Department of Life Sciences, Human Link, Dubai 48800, United Arab Emirates
- Correspondence: (A.K.); (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (O.K.); (Y.M.); (A.E.T.); (M.N.K.); (M.E.S.); (R.E.-S.)
- Correspondence: (A.K.); (G.K.); (M.A.A.)
| |
Collapse
|
5
|
Feitosa SGD, Maciel LG, Anjos JV. Biologically Active Thio‐pyrimidinones from Base‐catalyzed
Thiol‐Ene
Coupling with Maleimides. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Bhat R, Begum NS. Synthesis, Characterization, Antimicrobial Activity Screening, and Molecular Docking Study of Pyrimidine Carbonitrile Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021080169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nope E, Sathicq ÁG, Martínez JJ, Rojas H, Romanelli G. Hydrotalcites as catalyst in suitable multicomponent synthesis of uracil derivatives. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Hussein BRM, Khodairy A. Utility of [4‐(3‐methoxyphenyl)pyrimidin‐2‐yl]cyanamide in synthesis of some heterocyclic compounds. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Ahmed Khodairy
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
9
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
10
|
Jian Y, Forbes HE, Hulpia F, Risseeuw MDP, Caljon G, Munier-Lehmann H, Boshoff HIM, Van Calenbergh S. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F 420)-Dependent Nitroreductase (Ddn). J Med Chem 2021; 64:440-457. [PMID: 33347317 PMCID: PMC10629625 DOI: 10.1021/acs.jmedchem.0c01374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Swapping the substituents in positions 2 and 4 of the previously synthesized but yet undisclosed 5-cyano-4-(methylthio)-2-arylpyrimidin-6-ones 4, ring closure, and further optimization led to the identification of the potent antitubercular 2-thio-substituted quinazolinone 26. Structure-activity relationship (SAR) studies indicated a crucial role for both meta-nitro substituents for antitubercular activity, while the introduction of polar substituents on the quinazolinone core allowed reduction of bovine serum albumin (BSA) binding (63c, 63d). While most of the tested quinazolinones exhibited no cytotoxicity against MRC-5, the most potent compound 26 was found to be mutagenic via the Ames test. This analogue exhibited moderate inhibitory potency against Mycobacterium tuberculosis thymidylate kinase, the target of the 3-cyanopyridones that lies at the basis of the current analogues, indicating that the whole-cell antimycobacterial activity of the present S-substituted thioquinazolinones is likely due to modulation of alternative or additional targets. Diminished antimycobacterial activity was observed against mutants affected in cofactor F420 biosynthesis (fbiC), cofactor reduction (fgd), or deazaflavin-dependent nitroreductase activity (rv3547), indicating that reductive activation of the 3,5-dinitrobenzyl analogues is key to antimycobacterial activity.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15 75724 Paris, France
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
11
|
Bentahar S, Taleb MA, Sabour A, Dbik A, El Khomri M, El Messaoudi N, Lacherai A, Mamouni R. Potassium Fluoride-Modified Clay as a Reusable Heterogeneous Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019090240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Rahman AAHA, Nassar IF, Shaban AKF, El-Kady DS, Awad HM, El Sayed WA. Synthesis, Docking Studies into CDK-2 and Anticancer Activity of New Derivatives Based Pyrimidine Scaffold and Their Derived Glycosides. Mini Rev Med Chem 2019; 19:1093-1110. [PMID: 30864522 DOI: 10.2174/1389557519666190312165717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/27/2018] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND & OBJECTIVE New diaryl-substituted pyrimidinedione compounds, their thioxo derivatives as well as their bicyclic thiazole compounds were synthesized and characterized. METHODS The glycosylamino derivatives of the synthesized disubstituted derivatives of the pyrimidine scaffold were also prepared via reaction of the N3-amino derivatives with a number of monosaccharides followed by acetylation. RESULTS The anticancer activity of the synthesized compounds was studied against human liver cancer (HepG2) and RPE-1cell lines. Compounds 2a, 2b, 3a and 12 showed potent activities with IC50 results comparable to that of doxorubicin. CONCLUSION Docking investigations into Cyclin-dependent kinase 2 (CDK-2) enzyme, a potential target for cancer medication, were also reported showing the possible binding interaction into the enzyme active site to support their activity behavior.
Collapse
Affiliation(s)
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, Abassia, Cairo, Egypt
| | - Amira K F Shaban
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom, Egypt
| | - Dina S El-Kady
- Hormone Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael A El Sayed
- Chemistry Department, Faculty of Science, Qassim University, Buraydah, Saudi Arabia.,Photochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Mourad AK, Mohammed FK, Tammam GH, Mohammed SR. An Efficient Access to Pyrimidine‐based Polyfunctional Heterocycles with Anticipated Antibacterial Activity. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Asmaa Kamal Mourad
- Department of Chemistry, Faculty of ScienceFayoum University 63514 Fayoum Egypt
| | - Fatehia K. Mohammed
- Department of Chemistry, Faculty of ScienceFayoum University 63514 Fayoum Egypt
| | - Gamal Hassan Tammam
- Department of Chemistry, Faculty of ScienceFayoum University 63514 Fayoum Egypt
| | | |
Collapse
|
14
|
Nassar IF, El-Sayed WA, Ragab TIM, Shalaby ASG, Mehany ABM. Design, Synthesis of New Pyridine and Pyrimidine Sugar Compounds as Antagonists Targeting the ERα via Structure-Based Virtual Screening. Mini Rev Med Chem 2019; 19:395-409. [PMID: 30124151 DOI: 10.2174/1389557518666180820125210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND New aryl substituted cyclohepta[b]pyridine and cyclohepta[d]pyrimidine derivatives were synthesized. The sugar hydrazones of the synthesized pyridine and pyrimidine compounds were also prepared. METHOD In addition, the 1,3,4-oxadiazolyl acyclic C-nucleoside analogs of the pyridine system were prepared. The hemolytic, prebiotic, anticancer and antimicrobial activities of some of the synthesized compounds were also studied. Compounds 10 and 12 showed high activity against MCF-7, HEPG-2 and HCT-116 cell lines with IC50 at range 3.56-8.55 µg/mL. In addition, the synthesized condensed thiopyrimidine derivative 10 exhibited more potent bactericidal activity while compound 7 demonstrated potent antifungal activity against Aspergillus niger. Furthermore, the synthetic compounds of the pyrimidine base promoted the growth of lactic acid bacteria. RESULTS The predicted binding patterns of three of the prepared derivatives as possible antagonists against ERα were investigated which showed good binding patterns.
Collapse
Affiliation(s)
- Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael A El-Sayed
- Photochemistry Department, National Research Centre, El-Behouth St, Dokki, Cairo, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research, Division, National Research Centre, Dokki, Cairo, Egypt
| | - Al Shimaa Gamal Shalaby
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research, Division, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science Al-Azhar University, Cairo, Egypt
| |
Collapse
|
15
|
Isolation of intermediates in the synthesis of new 3,4-dihydro-2 H-chromeno[2,3- d]pyrimidines. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractReaction ofN-alkyl-2-imino-2H-chromene-3-carboxamides with dimethyl acetylenedicarboxylate (DMAD) in the presence of sodium carbonate as catalyst in refluxing ethanol gave new tricyclic products identified as methyl 3-alkyl-2-(2-methoxy-2-oxoethyl)-4-oxo-3,4-dihydro-2H-chromeno[2,3-d]pyrimidine-2-carboxylates. In the absence of sodium carbonate, dimethyl 2-((E)-3-(alkylcarbamoyl)-2H-chromen-2-ylideneamino)fumarates were isolated as intermediates. These intermediates could be successfully converted to the same new tricyclic products by heating in ethanol containing sodium carbonate. All new synthetic compounds were characterized on the basis of their FT-IR,1H and13C NMR spectra, and microanalytical data. To identify the correct stereoisomer of the intermediates, in one case a 2D nuclear Overhauser effect (2D-NOESY) spectrum together with density functional theory (DFT) calculation at the B3LYP/6-311+G(d,p) level of theory was used.
Collapse
|
16
|
Khoramdelan F, Davoodnia A, Bozorgmehr MR, Ebrahimi M. Synthesis of New Functionalized 1,4-Dihydroquinolines and Pyrimido[4,5-b]quinolines. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363217120386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
El-Sayed WA, Khalaf HS, Mohamed SF, Hussien HA, Kutkat OM, Amr AE. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217100279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hosseininasab N, Davoodnia A, Rostami-Charati F, Tavakoli-Hoseini N, Khojastehnezhad A. Synthesis of New Pyrimido[4′,5′:3,4]pyrazolo[1,2-b
]phthalazine-4,7,12-triones: Derivatives of a New Heterocyclic Ring System. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | | | | | - Amir Khojastehnezhad
- Young Researchers Club and Elites, Mashhad Branch; Islamic Azad University; Mashhad Iran
| |
Collapse
|
19
|
|
20
|
Synthesis of novel S-acyl and S-alkylpyrimidinone derivatives as potential cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Kaur H, Balzarini J, de Kock C, Smith PJ, Chibale K, Singh K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur J Med Chem 2015; 101:52-62. [PMID: 26114811 DOI: 10.1016/j.ejmech.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
A series of hybrids comprising of 5-cyanopyrimidine and quinoline moiety were synthesized and tested for in vitro antiplasmodial activity against NF54 and Dd2 strains of Plasmodium falciparum. Hybrid bearing m-nitrophenyl substituent at C-4 of pyrimidine displayed the highest antiplasmodial activity [IC50 = 56 nM] against the CQ(R) (Dd2) strain, which is four-fold greater than CQ.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Chemistry, UGC-Centre of Advance Study-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kelly Chibale
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kamaljit Singh
- Department of Chemistry, UGC-Centre of Advance Study-II, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
22
|
Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Effect of protonation and hydrogen bonding on 2, 4, 6-substituted pyrimidine and its salt complex-experimental and theoretical evidence. J Mol Model 2014; 20:2139. [PMID: 24567157 DOI: 10.1007/s00894-014-2139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Quantum molecular simulations of chemical systems can provide detailed information that is often inaccessible to direct experimental measurement. Pyrimidine is an interesting π-electron heterocyclic aromatic system which acts as the building block of many nucleic acid bases. The hydrogen bonds associated with the 2, 4, and 6-substituted pyrimidine and its hydrogen sulfate anion are considered for this current work. The experimental and computational evidence for the strength of these intra and intermolecular hydrogen are determined using vibrational spectra and quantum chemical calculations. Thus the effect of hydrogen bonding on the title compound is studied using its geometrical parameters, interaction energies, and vibrational spectra. Aromaticity and charge transfer studies have been performed to ascertain the aromatic behavior of the molecule. The PES scan studies have been done by varying the bond length to ascertain the protonation process of the compound. The IR spectral red shift (∼100 cm⁻¹), blue shift (∼97 cm⁻¹) and broadening of the polar stretching peaks shows the inter and intramolecular hydrogen bonding strength. Bond length alternation of proton donors along with the enormous interaction energies (∼0.5-150 kJ mol⁻¹) between the lone pair and proton donors provides clear evidence for this hydrogen bonding. The charge transfer due to the methyl substitutions which enhances the possibility of hydrogen bonding has been discussed. The main scope of this work is to study the protonation and hydrogen bonding associated with charge transfer which has great effect on the 2-amino-4, 6-dimethyl pyrimidinium hydrogen sulfate (ADHS) molecule.
Collapse
|
24
|
Ghodasara HB, Trivedi AR, Kataria VB, Patel BG, Shah VH. Synthesis and antimicrobial evaluation of novel substituted pyrimidine scaffold. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0596-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Cheng C, Shih YC, Chen HT, Chien TC. Regioselective arylation of uracil and 4-pyridone derivatives via copper(I) bromide mediated C–H bond activation. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|