1
|
Cui X, Yi Y, Lin Y, Zhu N, Li X. Clinical efficacy and safety of new compound single tablet antiviral drugs in the treatment of HIV/AIDS. Life Sci 2024; 358:123117. [PMID: 39424269 DOI: 10.1016/j.lfs.2024.123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
AIMS Genvoya, Biktarvy and Dovato are novel single-tablet antiretroviral therapy(ART). The aim of this study is to explore the therapeutic effects of these novel drugs on HIV/AIDS. MAIN METHODS This retrospective cohort study, conducted at a single center, included a total of 200 HIV-treated patients who transitioned to these new antiretroviral drugs from July 2021 to August 2023. Data were extracted from electronic medical records at Ditan Hospital. The Genvoya group comprised 22 patients, and all subsequent switches in this group were to Biktarvy. The primary HAART group consisted of 178 patients initially treated with a first-line triple Highly Active Antiretroviral Therapy (HAART) regimen during the same period. This group was further subdivided into HAART+Dovato, HAART+Biktarvy, and HAART+Genvoya groups based on the switching regimen. The primary outcomes focused on changes in viral load and immune efficacy, while secondary safety indicators included blood/liver function, lipid parameters, renal function, blood glucose, blood uric acid, etc. KEY FINDINGS: The viral suppression rate was 100 % after the drug change treatment, and CD4+ T cell counts increased significantly across all four groups. Over the 6-month treatment period, there were increases in creatinine (Cr), low-density lipoprotein (LDL), high-density lipoprotein (HDL), erythrocyte count, and glomerular filtration rate (eGFR). Conversely, Alanine transaminase (ALT), Aspartate aminotransferase (AST), C-reactive protein (CRP), albumin (ALB), and blood glucose (Glu) levels decreased. SIGNIFICANCE Genvoya, Biktarvy and Dovato are recommended for the treatment of HIV/AIDS and have a good safety profile.
Collapse
Affiliation(s)
- Xinyu Cui
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yunyun Yi
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yingying Lin
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Na Zhu
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|
2
|
Martin MA, Reynolds SJ, Foley BT, Nalugoda F, Quinn TC, Kemp SA, Nakalanzi M, Kankaka EN, Kigozi G, Ssekubugu R, Gupta RK, Abeler-Dörner L, Kagaayi J, Ratmann O, Fraser C, Galiwango RM, Bonsall D, Grabowski MK. Population dynamics of HIV drug resistance during treatment scale-up in Uganda: a population-based longitudinal study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.14.23297021. [PMID: 39417110 PMCID: PMC11482865 DOI: 10.1101/2023.10.14.23297021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Clinical studies have reported rising pre-treatment HIV drug resistance during antiretroviral treatment (ART) scale-up in Africa, but representative data are limited. We estimated population-level drug resistance trends during ART expansion in Uganda. Methods We analyzed data from the population-based open Rakai Community Cohort Study conducted at agrarian, trading, and fishing communities in southern Uganda between 2012 and 2019. Consenting participants aged 15-49 were HIV tested and completed questionnaires. Persons living with HIV (PLHIV) provided samples for viral load quantification and virus deep-sequencing. Sequence data were used to predict resistance. Population prevalence of class-specific resistance and resistance-conferring substitutions were estimated using robust log-Poisson regression. Findings Data from 93,622 participant-visits, including 4,702 deep-sequencing measurements, showed that the prevalence of NNRTI resistance among pre-treatment viremic PLHIV doubled between 2012 and 2017 (PR:1.98, 95%CI:1.34-2.91), rising to 9.61% (7.27-12.7%). The overall population prevalence of pre-treatment viremic NNRTI and NRTI resistance among all participants decreased during the same period, reaching 0.25% (0.18% - 0.33%) and 0.05% (0.02% - 0.10%), respectively (p-values for trend = 0.00015, 0.002), coincident with increasing treatment coverage and viral suppression. By the final survey, population prevalence of resistance contributed by treatment-experienced PLHIV exceeded that from pre-treatment PLHIV, with NNRTI resistance at 0.54% (0.44%-0.66%) and NRTI resistance at 0.42% (0.33%-0.53%). Overall, NNRTI and NRTI resistance was predominantly attributable to rtK103N and rtM184V. While 10.52% (7.97%-13.87%) and 9.95% (6.41%-15.43%) of viremic pre-treatment and treatment-experienced PLHIV harbored the inT97A mutation, no major dolutegravir resistance mutations were observed. Interpretation Despite rising NNRTI resistance among pre-treatment PLHIV, overall population prevalence of pre-treatment resistance decreased due to treatment uptake. Most NNRTI and NRTI resistance is now contributed by treatment-experienced PLHIV. The high prevalence of mutations conferring resistance to components of current first-line ART regimens among PLHIV with viremia is potentially concerning.
Collapse
Affiliation(s)
- Michael A. Martin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Steven James Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian T. Foley
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Thomas C. Quinn
- Rakai Health Sciences Program, Kalisizo, Uganda
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven A. Kemp
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Ravindra K. Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Lucie Abeler-Dörner
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Kagaayi
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, England, United Kingdom
| | - Christophe Fraser
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - David Bonsall
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Grabowski
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Hall M, Golubchik T, Bonsall D, Abeler-Dörner L, Limbada M, Kosloff B, Schaap A, de Cesare M, MacIntyre-Cockett G, Otecko N, Probert W, Ratmann O, Bulas Cruz A, Piwowar-Manning E, Burns DN, Cohen MS, Donnell DJ, Eshleman SH, Simwinga M, Fidler S, Hayes R, Ayles H, Fraser C. Demographics of sources of HIV-1 transmission in Zambia: a molecular epidemiology analysis in the HPTN 071 PopART study. THE LANCET. MICROBE 2024; 5:e62-e71. [PMID: 38081203 PMCID: PMC10789608 DOI: 10.1016/s2666-5247(23)00220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND In the last decade, universally available antiretroviral therapy (ART) has led to greatly improved health and survival of people living with HIV in sub-Saharan Africa, but new infections continue to appear. The design of effective prevention strategies requires the demographic characterisation of individuals acting as sources of infection, which is the aim of this study. METHODS Between 2014 and 2018, the HPTN 071 PopART study was conducted to quantify the public health benefits of ART. Viral samples from 7124 study participants in Zambia were deep-sequenced as part of HPTN 071-02 PopART Phylogenetics, an ancillary study. We used these sequences to identify likely transmission pairs. After demographic weighting of the recipients in these pairs to match the overall HIV-positive population, we analysed the demographic characteristics of the sources to better understand transmission in the general population. FINDINGS We identified a total of 300 likely transmission pairs. 178 (59·4%) were male to female, with 130 (95% CI 110-150; 43·3%) from males aged 25-40 years. Overall, men transmitted 2·09-fold (2·06-2·29) more infections per capita than women, a ratio peaking at 5·87 (2·78-15·8) in the 35-39 years source age group. 40 (26-57; 13·2%) transmissions linked individuals from different communities in the trial. Of 288 sources with recorded information on drug resistance mutations, 52 (38-69; 18·1%) carried viruses resistant to first-line ART. INTERPRETATION HIV-1 transmission in the HPTN 071 study communities comes from a wide range of age and sex groups, and there is no outsized contribution to new infections from importation or drug resistance mutations. Men aged 25-39 years, underserved by current treatment and prevention services, should be prioritised for HIV testing and ART. FUNDING National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health.
Collapse
Affiliation(s)
- Matthew Hall
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Sydney Infectious Diseases Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David Bonsall
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucie Abeler-Dörner
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Barry Kosloff
- Zambart, University of Zambia, Lusaka, Zambia; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ab Schaap
- Zambart, University of Zambia, Lusaka, Zambia
| | - Mariateresa de Cesare
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Newton Otecko
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - William Probert
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK
| | - Ana Bulas Cruz
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - David N Burns
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Myron S Cohen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sarah Fidler
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Helen Ayles
- Zambart, University of Zambia, Lusaka, Zambia; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Christophe Fraser
- Pandemic Sciences Institute and Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Grant‐McAuley W, Piwowar‐Manning E, Clarke W, Breaud A, Zewdie KB, Moore A, Ayles HM, Kosloff B, Shanaube K, Bock P, Meehan S, Maarman G, Fidler S, Hayes R, Donnell D, Eshleman SH, for the HPTN 071 (PopART) Study Team. Population-level analysis of natural control of HIV infection in Zambia and South Africa: HPTN 071 (PopART). J Int AIDS Soc 2023; 26:e26179. [PMID: 37886843 PMCID: PMC10603557 DOI: 10.1002/jia2.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
INTRODUCTION HIV controllers have low viral loads (VL) without antiretroviral treatment (ART). We evaluated viraemic control in a community-randomized trial conducted in Zambia and South Africa that evaluated the impact of a combination prevention intervention on HIV incidence (HPTN 071 [PopART]; 2013-2018). METHODS VL and antiretroviral (ARV) drug testing were performed using plasma samples collected 2 years after enrolment for 4072 participants who were HIV positive at the start of the study intervention. ARV drug use was assessed using a qualitative laboratory assay that detects 22 ARV drugs in five drug classes. Participants were classified as non-controllers if they had a VL ≥2000 copies/ml with no ARV drugs detected at this visit. Additional VL and ARV drug testing was performed at a second annual study visit to confirm controller status. Participants were classified as controllers if they had VLs <2000 with no ARV drugs detected at both visits. Non-controllers who had ARV drugs detected at either visit were excluded from the analysis to minimize potential confounders associated with ARV drug access and uptake. RESULTS The final cohort included 126 viraemic controllers and 766 non-controllers who had no ARV drugs detected. The prevalence of controllers among the 4072 persons assessed was 3.1% (95% confidence interval [CI]: 2.6%, 3.6%). This should be considered a minimum estimate, since high rates of ARV drug use in the parent study limited the ability to identify controllers. Among the 892 participants in the final cohort, controller status was associated with biological sex (female > male, p = 0.027). There was no significant association between controller status and age, study country or herpes simplex virus type 2 (HSV-2) status at study enrolment. CONCLUSIONS To our knowledge, this report presents the first large-scale, population-level study evaluating the prevalence of viraemic control and associated factors in Africa. A key advantage of this study was that a biomedical assessment was used to assess ARV drug use (vs. self-reported data). This study identified a large cohort of HIV controllers and non-controllers not taking ARV drugs, providing a unique repository of longitudinal samples for additional research. This cohort may be useful for further studies investigating the mechanisms of virologic control.
Collapse
Affiliation(s)
- Wendy Grant‐McAuley
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - William Clarke
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Autumn Breaud
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | | - Helen Mary Ayles
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Barry Kosloff
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
- Clinical Research DepartmentLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kwame Shanaube
- ZambartUniversity of Zambia School of Public HealthLusakaZambia
| | - Peter Bock
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Sue‐Ann Meehan
- Desmond Tutu TB CenterDepartment of Paediatrics and Child HealthStellenbosch UniversityWestern CapeSouth Africa
| | - Gerald Maarman
- Centre for Cardio‐Metabolic Research in AfricaDivision of Medical PhysiologyFaculty of Medicine and Health SciencesStellenbosch UniversityWestern CapeSouth Africa
| | - Sarah Fidler
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Richard Hayes
- Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Susan H. Eshleman
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
5
|
Fogel JM, Zewdie K, Clarke WA, Piwowar-Manning E, Breaud A, Moore A, Kosloff B, Shanaube K, van Zyl G, Scheepers M, Floyd S, Bock P, Ayles H, Fidler S, Hayes R, Donnell D, Eshleman SH, for the HPTN 071 (PopART) Study Team. Antiretroviral Drug Detection in a Community-Randomized Trial of Universal HIV Testing and Treatment: HPTN 071 (PopART). Open Forum Infect Dis 2022; 9:ofac576. [PMID: 36447611 PMCID: PMC9697607 DOI: 10.1093/ofid/ofac576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/28/2022] [Indexed: 08/19/2023] Open
Abstract
Background Antiretroviral therapy (ART) reduces human immunodeficiency virus (HIV) transmission risk. The primary aim of this study was to evaluate ART uptake in a trial in Zambia and South Africa that implemented a community-wide universal testing and treatment package to reduce HIV incidence. Methods Study communities were randomized to 3 arms: A, combination-prevention intervention with universal ART; B, combination-prevention intervention with ART according to local guidelines; and C, standard of care. Samples were collected from people with HIV (PWH) during a survey visit conducted 2 years after study implementation: these samples were tested for 22 antiretroviral (ARV) drugs. Antiretroviral therapy uptake was defined as detection of ≥1 ARV drug. Resistance was evaluated in 612 randomly selected viremic participants. A 2-stage, cluster-based approach was used to assess the impact of the study intervention on ART uptake. Results Antiretroviral drugs were detected in 4419 of 6207 (71%) samples (Arm A, 73%; Arm B, 70%; Arm C, 60%); 4140 (94%) of samples with ARV drugs had viral loads <400 copies/mL. Drug resistance was observed in 237 of 612 (39%) viremic participants (95 of 102 [93%] with ARV drugs; 142 of 510 [28%] without drugs). Antiretroviral therapy uptake was associated with older age, female sex, enrollment year, seroconverter status, and self-reported ART (all P < .001). The adjusted risk ratio for ART uptake was similar for Arm A versus C (1.21; 95% confidence interval [CI], .94-1.54; P = .12) and Arm B versus C (1.14; 95% CI, .89-1.46; P = .26). Conclusions At the 2-year survey, 71% of PWH were on ART and 94% of those participants were virally suppressed. Universal testing and treatment was not significantly associated with increased ART uptake in this cohort.
Collapse
Affiliation(s)
- Jessica M Fogel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kidist Zewdie
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - William A Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Barry Kosloff
- Zambart, University of Zambia, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Gert van Zyl
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa
| | - Michelle Scheepers
- Department of Paediatrics and Child Health, Desmond Tutu TB Center, Stellenbosch University, Western Cape, South Africa
| | - Sian Floyd
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Department of Paediatrics and Child Health, Desmond Tutu TB Center, Stellenbosch University, Western Cape, South Africa
| | - Helen Ayles
- Zambart, University of Zambia, Lusaka, Zambia
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Deborah Donnell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|