1
|
Machado CM, de-Souza-Ferreira E, Silva GFS, Pimentel FSA, De-Souza EA, Silva-Rodrigues T, Gandara ACP, Zeidler JD, Fernandes-Siqueira LO, De-Queiroz ALFV, Andrade-Silva L, Victória-Martins K, Fernandes-Carvalho C, Chini EN, Passos JF, Da Poian AT, Montero-Lomelí M, Galina A, Masuda CA. Galactose-1-phosphate inhibits cytochrome c oxidase and causes mitochondrial dysfunction in classic galactosemia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167340. [PMID: 38986816 DOI: 10.1016/j.bbadis.2024.167340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.
Collapse
Affiliation(s)
- Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduardo de-Souza-Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thaia Silva-Rodrigues
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana C P Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Julianna D Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lorena O Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Letícia Andrade-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Klara Victória-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Clara Fernandes-Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mónica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
2
|
Wurth R, Turgeon C, Stander Z, Oglesbee D. An evaluation of untargeted metabolomics methods to characterize inborn errors of metabolism. Mol Genet Metab 2024; 141:108115. [PMID: 38181458 PMCID: PMC10843816 DOI: 10.1016/j.ymgme.2023.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Inborn errors of metabolism (IEMs) encompass a diverse group of disorders that can be difficult to classify due to heterogenous clinical, molecular, and biochemical manifestations. Untargeted metabolomics platforms have become a popular approach to analyze IEM patient samples because of their ability to detect many metabolites at once, accelerating discovery of novel biomarkers, and metabolic mechanisms of disease. However, there are concerns about the reproducibility of untargeted metabolomics research due to the absence of uniform reporting practices, data analyses, and experimental design guidelines. Therefore, we critically evaluated published untargeted metabolomic platforms used to characterize IEMs to summarize the strengths and areas for improvement of this technology as it progresses towards the clinical laboratory. A total of 96 distinct IEMs were collectively evaluated by the included studies. However, most of these IEMs were evaluated by a single untargeted metabolomic method, in a single study, with a limited cohort size (55/96, 57%). The goals of the included studies generally fell into two, often overlapping, categories: detecting known biomarkers from many biochemically distinct IEMs using a single platform, and detecting novel metabolites or metabolic pathways. There was notable diversity in the design of the untargeted metabolomic platforms. Importantly, the majority of studies reported adherence to quality metrics, including the use of quality control samples and internal standards in their experiments, as well as confirmation of at least some of their feature annotations with commercial reference standards. Future applications of untargeted metabolomics platforms to the study of IEMs should move beyond single-subject analyses, and evaluate reproducibility using a prospective, or validation cohort.
Collapse
Affiliation(s)
- Rachel Wurth
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA
| | - Coleman Turgeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Zinandré Stander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Alodaib AN, Nimer RM, Alhumaidy R, Alhenaky A, Abdel Jabar M, AlMalki RH, Abdel Rahman AM. Biomarker discovery in galactosemia: Metabolomics with UPLC/HRMS in dried blood spots. Front Mol Biosci 2023; 10:1154149. [PMID: 37081853 PMCID: PMC10110906 DOI: 10.3389/fmolb.2023.1154149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction:Galactosemia (GAL) is a genetic disorder that results in disturbances in galactose metabolism and can lead to life-threatening complications. However, the underlying pathophysiology of long-term complications in GAL remains poorly understood. Methods: In this study, a metabolomics approach using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was used to investigate metabolomic changes in dried blood spots of 15 patients with GAL and 39 healthy individuals. Results: The study found that 2,819 metabolites underwent significant changes in patients with GAL compared to the control group. 480 human endogenous metabolites were identified, of which 209 and 271 were upregulated and downregulated, respectively. PA (8:0/LTE4) and ganglioside GT1c (d18:0/20:0) metabolites showed the most significant difference between GAL and the healthy group, with an area under the curve of 1 and 0.995, respectively. Additionally, the study identified potential biomarkers for GAL, such as 17-alpha-estradiol-3-glucuronide and 16-alpha-hydroxy DHEA 3-sulfatediphosphate. Conclusion: This metabolomics study deepened the understanding of the pathophysiology of GAL and presented potential biomarkers that might serve as prognostic biomarkers to monitor the progression or support the clinical diagnosis of GAL.
Collapse
Affiliation(s)
- Ahmad N. Alodaib
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Refat M. Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rowan Alhumaidy
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Alaa Alhenaky
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- *Correspondence: Anas M. Abdel Rahman,
| |
Collapse
|
4
|
Hermans ME, van Weeghel M, Vaz FM, Ferdinandusse S, Hollak CEM, Huidekoper HH, Janssen MCH, van Kuilenburg ABP, Pras-Raves ML, Wamelink MMC, Wanders RJA, Welsink-Karssies MM, Bosch AM. Multi-omics in classical galactosemia: Evidence for the involvement of multiple metabolic pathways. J Inherit Metab Dis 2022; 45:1094-1105. [PMID: 36053831 DOI: 10.1002/jimd.12548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.
Collapse
Affiliation(s)
- Merel E Hermans
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, The Netherlands
| | - Sacha Ferdinandusse
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mia L Pras-Raves
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Department of Clinical Chemistry, Metabolic Unit, Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mendy M Welsink-Karssies
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hertzog A, Selvanathan A, Devanapalli B, Ho G, Bhattacharya K, Tolun AA. A narrative review of metabolomics in the era of "-omics": integration into clinical practice for inborn errors of metabolism. Transl Pediatr 2022; 11:1704-1716. [PMID: 36345452 PMCID: PMC9636448 DOI: 10.21037/tp-22-105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Traditional targeted metabolomic investigations identify a pre-defined list of analytes in samples and have been widely used for decades in the diagnosis and monitoring of inborn errors of metabolism (IEMs). Recent technological advances have resulted in the development and maturation of untargeted metabolomics: a holistic, unbiased, analytical approach to detecting metabolic disturbances in human disease. We aim to provide a summary of untargeted metabolomics [focusing on tandem mass spectrometry (MS-MS)] and its application in the field of IEMs. METHODS Data for this review was identified through a literature search using PubMed, Google Scholar, and personal repositories of articles collected by the authors. Findings are presented within several sections describing the metabolome, the current use of targeted metabolomics in the diagnostic pathway of patients with IEMs, the more recent integration of untargeted metabolomics into clinical care, and the limitations of this newly employed analytical technique. KEY CONTENT AND FINDINGS Untargeted metabolomic investigations are increasingly utilized in screening for rare disorders, improving understanding of cellular and subcellular physiology, discovering novel biomarkers, monitoring therapy, and functionally validating genomic variants. Although the untargeted metabolomic approach has some limitations, this "next generation metabolic screening" platform is becoming increasingly affordable and accessible. CONCLUSIONS When used in conjunction with genomics and the other promising "-omic" technologies, untargeted metabolomics has the potential to revolutionize the diagnostics of IEMs (and other rare disorders), improving both clinical and health economic outcomes.
Collapse
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Beena Devanapalli
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gladys Ho
- Sydney Genome Diagnostics, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Fridovich-Keil JL, Berry GT. Pathophysiology of long-term complications in classic galactosemia: What we do and do not know. Mol Genet Metab 2022; 137:33-39. [PMID: 35882174 DOI: 10.1016/j.ymgme.2022.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.
Collapse
Affiliation(s)
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Zhang Y, Sun S, Wang M, Yu W, Chen P, Yuan F, Fang X. Untargeted LC/MS-Based Metabolic Phenotyping of Hypopituitarism in Young Males. Front Pharmacol 2021; 12:684869. [PMID: 34305597 PMCID: PMC8295757 DOI: 10.3389/fphar.2021.684869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Hypopituitarism (Hypo-Pit) is partial or complete insufficiency of anterior pituitary hormones. Besides hormone metabolism, the global metabolomics in Hypo-Pit are largely unknown. We aimed to explore potential biomarkers to aid in diagnosis and personalized treatment. Methods: Using both univariate and multivariate statistical methods, we identified 72 differentially abundant features through liquid chromatography coupled to high-resolution mass spectrometry, obtained in 134 males with Hypo-Pit and 90 age matched healthy controls. Results: Hypopituitarism exhibits an increased abundance of metabolites involved in amino acid degradation and glycerophospholipid synthesis, but decreased content of metabolites in steroid hormone synthesis and fatty acid beta-oxidation. Significantly changed metabolites included creatine, creatinine, L-alanine, phosphocholines, androstenedione, hydroprenenolone, and acylcarnitines. In Hypo-Pit patients, the increased ratio of creatine/creatinine suggested reduced creatine uptake and impaired creatine utilization, whereas the decreased level of beta-hydroxybutyrate, acetylcarnitine (C2) and a significantly decreased ratio of decanoylcarnitine (C10) to free carnitine suggested an impaired beta-oxidation. Furthermore, the creatine/creatinine and decanoylcarnitine/carnitine ratio were identified as diagnostic biomarkers for Hypo-Pit with AUCs of 0.976 and 0.988, respectively. Finally, we found that the creatinine and decanoylcarnitine/carnitine ratio could distinguish cases that were sensitive vs. resistant to human chorionic gonadotropin therapy. Conclusion: We provided a global picture of altered metabolic pathways in Hypo-Pit, and the identified biomarkers in creatine metabolism and beta-oxidation might be useful for the preliminary screening and diagnosis of Hypo-Pit.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai, China
| | - Shouyue Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai, China
| | - Ming Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Yu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Peizhan Chen
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Galactose-Induced Skin Aging: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7145656. [PMID: 32655772 PMCID: PMC7317321 DOI: 10.1155/2020/7145656] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.
Collapse
|
9
|
Rasmussen SA, Daenzer JMI, MacWilliams JA, Head ST, Williams MB, Geurts AM, Schroeder JP, Weinshenker D, Fridovich‐Keil JL. A galactose-1-phosphate uridylyltransferase-null rat model of classic galactosemia mimics relevant patient outcomes and reveals tissue-specific and longitudinal differences in galactose metabolism. J Inherit Metab Dis 2020; 43:518-528. [PMID: 31845342 PMCID: PMC7318568 DOI: 10.1002/jimd.12205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.
Collapse
Affiliation(s)
- Shauna A. Rasmussen
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | - Jennifer M. I. Daenzer
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | - Jessica A. MacWilliams
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | - S. Taylor Head
- Rollins School of Public Health, Graduate Program in BiostatisticsEmory UniversityAtlantaGeorgia
| | - Martine B. Williams
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | - Aron M. Geurts
- Gene Editing Rat Resource CenterMedical College of WisconsinMilwaukeeWisconsin
| | - Jason P. Schroeder
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | - David Weinshenker
- Department of Human GeneticsEmory University School of Medicine, Emory UniversityAtlantaGeorgia
| | | |
Collapse
|