1
|
Mütze U, Scharré S, Schnabel-Besson E, Kuseyri Hübschmann O, Höster F, Tuncel AT, Kölker S, Opladen T. Newborn screening for neuro-metabolic disorders: Strategies, clinical benefits, and prerequisites for program expansion. Eur J Paediatr Neurol 2025; 56:84-96. [PMID: 40339400 DOI: 10.1016/j.ejpn.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
Newborn screening (NBS) is a successful program of secondary prevention for rare diseases, such as neuro-metabolic diseases, enabling early identification of affected individuals and pre-symptomatic treatment. Driven by innovations in high-throughput sequencing technologies, NBS panels have continued to grow and will probably be extended further in the future. However, implementing NBS for a disease is subject to various preconditions to maximize the benefit for the affected children, while avoiding harm to the screened healthy cohort, their families and the society. Ideally, data on clinical long-term benefit of NBS and early treatment is collected prior to NBS implementation through long-term observational studies and registries. In addition, NBS should be implemented as an iteratively evaluated public health program and the data collection should be accompanied by intra-operable long-term observational studies, ideally extended in international cooperations. In this review, the current expertise in NBS, the screening strategies and possible long-term clinical benefits are presented and discussed for several neuro-metabolic diseases, including propionic acidemia and isolated methylmalonic acidemias, homocystinurias, remethylation defects, acquired cobalamin (vitamin B12) deficiency, urea cycle disorders, tetrahydrobiopterin (BH4) and primary neurotransmitter disorders, as well as lysosomal storage disorders. Given these prerequisites, several of the neuro-metabolic diseases discussed here might be part of future NBS programs worldwide.
Collapse
Affiliation(s)
- Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Svenja Scharré
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Elena Schnabel-Besson
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Friederike Höster
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ali Tunҫ Tuncel
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Zheng P, Yu C, Xie L, Ji X, Feng S, Gao Y, Wei X, Wu W, Chen Q. Accelerating the diagnosis of Chinese cblC type MMA patients by multiplex PCR sequencing method. Pediatr Res 2025:10.1038/s41390-025-03841-4. [PMID: 39815091 DOI: 10.1038/s41390-025-03841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND CblC type methylmalonic aciduria (cblC disease) is the most common inborn error of vitamin B12 metabolism and due to mutations in the MMACHC gene. The earlier the diagnosis, the better the prognosis. Therefore, convenient and inexpensive detection method is needed. METHODS This study selected mutational hot-spot regions in the MMACHC gene which harbors more than 90% of mutant alleles responsible for cblC disease in China. Subsequently, a hot-spot regions multi-PCR Sanger sequencing method (HsRMSS) was designed. The accuracy and efficiency of HsRMSS was validated using samples from 20 cblC families with known MMACHC gene mutations and 50 healthy volunteers. In addition, patients' clinical phenotypes and molecular genetic features were analyzed. RESULTS A total of 16 different mutations were identified in 20 cblC families. Among them, the most common mutations were c.609 G>A (26/80, 32.5%), c.567dupT (10/80, 12.5%), c.80A>G (8/80, 10.0%), c.658_660delAAG (8/80, 10.0%) and c.394C>T (6/80, 7.5%), which accounted for over 70% of disease alleles. The HsRMSS results were the same as the results using the whole exon sequencing, with a coincidence rate of 100%. CONCLUSION The HsRMSS targeting the mutational hot-spots of MMACHC gene could be a promising tool to accurately and rapidly diagnose cblC disease in China. IMPACT This study reported the development and validation of a hot-spot regions multi-PCR Sanger sequencing method for targeting hotspots which harbor most of the common MMACHC gene mutations reported in Chinese patients with cblC disease. The approach could have a potential clinical application as a rapid diagnosis and screening tool for suspected children with cblC type MMA and population carrier, owing to its high throughput, low cost, and high sensitivity and specificity.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Chaoji Yu
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Lina Xie
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Xinna Ji
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Shuo Feng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yanyan Gao
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Xing Wei
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Wenli Wu
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Qian Chen
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
3
|
Morris AAM, Sokolová J, Pavlíková M, Gleich F, Kölker S, Dionisi‐Vici C, Baumgartner MR, Hannibal L, Blom HJ, Huemer M, Kožich V, E‐HOD Consortium. Cystathionine β-Synthase Deficiency in the E-HOD Registry-Part II: Dietary and Pharmacological Treatment. J Inherit Metab Dis 2025; 48:e12844. [PMID: 40095936 PMCID: PMC11729643 DOI: 10.1002/jimd.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 03/19/2025]
Abstract
Cystathionine β-synthase (CBS) deficiency (classical homocystinuria) has a wide range of severity. Mildly affected patients typically present as adults with thromboembolism and respond to treatment with pyridoxine. Severely affected patients usually present during childhood with learning difficulties, ectopia lentis and skeletal abnormalities; they are pyridoxine non-responders (NR) or partial responders (PR) and require treatment with a low-methionine diet and/or betaine. The European network and registry for Homocystinurias and methylation Defects (E-HOD) has published management guidelines for CBS deficiency and recommended keeping plasma total homocysteine (tHcy) concentrations below 100 μmol/L. We have now analysed data from 311 patients in the registry to see how closely treatment follows the guidelines. Pyridoxine-responsive patients generally achieved tHcy concentrations below 50 μmol/L, but many NRs and PRs had a mean tHcy considerably above 100 μmol/L. Most NRs were managed with betaine and a special diet. This usually involved severe protein restriction and a methionine-free amino acid mixture, but some patients had a natural protein intake substantially above the WHO safe minimum. Work is needed on the methionine content of dietary protein as estimates vary widely. Contrary to the guidelines, most NRs were on pyridoxine, sometimes at dangerously high doses. tHcy concentrations were similar in groups prescribed high or low betaine doses and natural protein intakes. High tHcy levels were probably often due to poor compliance. Comparing time-to-event graphs for NR patients detected by newborn screening and those ascertained clinically showed that treatment could prevent thromboembolism (risk ratio 0.073) and lens dislocation (risk ratio 0.069).
Collapse
Affiliation(s)
- Andrew A. M. Morris
- Manchester Centre for Genomic MedicineManchester University Hospitals NHS TrustManchesterUK
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzechia
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University‐Faculty of Mathematics and PhysicsPragueCzechia
| | - Florian Gleich
- Centre for Pediatric and Adolescent Medicine, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic MedicineMedical Faculty of Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Stefan Kölker
- Centre for Pediatric and Adolescent Medicine, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic MedicineMedical Faculty of Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Carlo Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Research HospitalRomeItaly
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Center for General Pediatrics and Adolescent Medicine, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Henk J. Blom
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Department of PediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzechia
| | | |
Collapse
|
4
|
Kožich V, Majtan T. Komrower Memorial Lecture 2023. Molecular basis of phenotype expression in homocystinuria: Where are we 30 years later? J Inherit Metab Dis 2024; 47:841-859. [PMID: 38873792 DOI: 10.1002/jimd.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
This review summarises progress in the research of homocystinuria (HCU) in the past three decades. HCU due to cystathionine β-synthase (CBS) was discovered in 1962, and Prof. Jan Peter Kraus summarised developments in the field in the first-ever Komrower lecture in 1993. In the past three decades, significant advancements have been achieved in the biology of CBS, including gene organisation, tissue expression, 3D structures, and regulatory mechanisms. Renewed interest in CBS arose in the late 1990s when this enzyme was implicated in biogenesis of H2S. Advancements in genetic and biochemical techniques enabled the identification of several hundreds of pathogenic CBS variants and the misfolding of missense mutations as a common mechanism. Several cellular, invertebrate and murine HCU models allowed us to gain insights into functional and metabolic pathophysiology of the disease. Establishing the E-HOD consortium and patient networks, HCU Network Australia and HCU Network America, offered new possibilities for acquiring clinical data in registries and data on patients' quality of life. A recent analysis of data from the E-HOD registry showed that the clinical variability of HCU is broad, extending from severe childhood disease to milder (late) adulthood forms, which typically respond to pyridoxine. Pyridoxine responsiveness appears to be the key factor determining the clinical course of HCU. Increased awareness about HCU played a role in developing novel therapies, such as gene therapy, correction of misfolding by chaperones, removal of methionine from the gut and enzyme therapies that decrease homocysteine or methionine in the circulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
6
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
7
|
Uygur E, Aktuglu-Zeybek C, Aghalarov M, Cansever MS, Kıykım E, Zubarioglu T. A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency. Nutrients 2023; 15:3105. [PMID: 37513523 PMCID: PMC10384669 DOI: 10.3390/nu15143105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The main treatment for pyridoxine-nonresponsive cystathionine-β-synthase deficiency is a strict diet. Most centers prescribe low-protein diets based on gram-protein exchanges, and all protein sources are weighed. The purpose of this study is to investigate the effects of a more liberal methionine (Met)-based diet with relaxed consumption of fruits and vegetables on metabolic outcomes and dietary adherence. Ten patients previously on a low-protein diet based on a gram-protein exchange list were enrolled. The natural protein exchange lists were switched to a "Met portion exchange list". Foods containing less than 0.005 g methionine per 100 g of the food were accepted as exchange-free foods. The switch to Met portioning had no adverse effects on the control of plasma homocysteine levels in terms of metabolic outcomes. It resulted in a significant reduction in patients' daily betaine dose. All patients preferred to continue with this modality. In conclusion, methionine-portion-based medical nutrition therapy with relaxed consumption of fruits and vegetables seems to be a good and safe option to achieve good metabolic outcomes and high treatment adherence.
Collapse
Affiliation(s)
- Esma Uygur
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
- Nutrition and Dietetics PhD Programme, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey
| | - Cigdem Aktuglu-Zeybek
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Mirsaid Aghalarov
- Department of Pediatrics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Mehmet Serif Cansever
- Division of Medical Laboratory Techniques, Department of Medical Documentation and Techniques, The Vocational School of Health Services, Istanbul University-Cerrahpasa, 34295 Istanbul, Turkey
| | - Ertugrul Kıykım
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Tanyel Zubarioglu
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| |
Collapse
|
8
|
Dorley MC, Dizikes GJ, Pickens CA, Cuthbert C, Basheeruddin K, Gulamali-Majid F, Hetterich P, Hietala A, Kelsey A, Klug T, Lesko B, Mills M, Moloney S, Neogi P, Orsini J, Singer D, Petritis K. Harmonization of Newborn Screening Results for Pompe Disease and Mucopolysaccharidosis Type I. Int J Neonatal Screen 2023; 9:ijns9010011. [PMID: 36975849 PMCID: PMC10059896 DOI: 10.3390/ijns9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
In newborn screening, false-negative results can be disastrous, leading to disability and death, while false-positive results contribute to parental anxiety and unnecessary follow-ups. Cutoffs are set conservatively to prevent missed cases for Pompe and MPS I, resulting in increased falsepositive results and lower positive predictive values. Harmonization has been proposed as a way to minimize false-negative and false-positive results and correct for method differences, so we harmonized enzyme activities for Pompe and MPS I across laboratories and testing methods (Tandem Mass Spectrometry (MS/MS) or Digital Microfluidics (DMF)). Participating states analyzed proofof- concept calibrators, blanks, and contrived specimens and reported enzyme activities, cutoffs, and other testing parameters to Tennessee. Regression and multiples of the median were used to harmonize the data. We observed varied cutoffs and results. Six of seven MS/MS labs reported enzyme activities for one specimen for MPS I marginally above their respective cutoffs with results classified as negative, whereas all DMF labs reported this specimen's enzyme activity below their respective cutoffs with results classified as positive. Reasonable agreement in enzyme activities and cutoffs was achieved with harmonization; however, harmonization does not change how a value would be reported as this is dependent on the placement of cutoffs.
Collapse
Affiliation(s)
- M Christine Dorley
- Tennessee Department of Health, Division of Laboratory Services, Nashville, TN 37243, USA
- College of Health Sciences & Public Policy, Walden University, Minneapolis, MN 55401, USA
| | - George J Dizikes
- Tennessee Department of Health, Division of Laboratory Services, Knoxville, TN 37920, USA
| | - Charles Austin Pickens
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Carla Cuthbert
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | | | | | - Paul Hetterich
- Virginia Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA 23219, USA
| | - Amy Hietala
- Minnesota Department of Health, St. Paul, MN 55155, USA
| | - Ashley Kelsey
- Michigan Department of Health & Human Services, Lansing, MI 48906, USA
| | - Tracy Klug
- Missouri State Public Health Laboratory, Jefferson City, MO 65101, USA
| | - Barbara Lesko
- Department of Pathology, Indiana University, Indianapolis, IN 46202, USA
| | - Michelle Mills
- Kansas Health and Environmental Laboratories, Topeka, KS 66620, USA
| | - Shawn Moloney
- Michigan Department of Health & Human Services, Lansing, MI 48906, USA
| | - Partha Neogi
- California Department of Public Health, Richmond, CA 94804, USA
| | - Joseph Orsini
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | - Konstantinos Petritis
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| |
Collapse
|
9
|
Majtan T, Kožich V, Kruger WD. Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria. Br J Pharmacol 2023; 180:264-278. [PMID: 36417581 PMCID: PMC9822868 DOI: 10.1111/bph.15991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D. Kruger
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
10
|
Mütze U, Mengler K, Boy N, Gleich F, Opladen T, Garbade SF, Kölker S. How longitudinal observational studies can guide screening strategy for rare diseases. J Inherit Metab Dis 2022; 45:889-901. [PMID: 35488475 DOI: 10.1002/jimd.12508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Newborn screening (NBS) is an important secondary prevention program, aiming to shift the paradigm of medicine to the pre-clinical stage of a disease. Starting more than 50 years ago, technical advances, such as tandem mass spectrometry (MS/MS), paved the way to a continuous extension of NBS programs. However, formal evidence of the long-term clinical benefits in large cohorts and cost-effectiveness of extended NBS programs is still scarce. Although published studies confirmed important benefits of NBS programs, it also unraveled a significant number of limitations. These include an incompletely understood natural history and phenotypic diversity of some screened diseases, unreliable early and precise prediction of individual disease severity, uncertainty about case definition, risk stratification, and indication to treat, resulting in a diagnostic and treatment dilemma in individuals with ambiguous screening and confirmatory test results. Interoperable patient registries are multi-purpose tools that could help to close the current knowledge gaps and to inform further optimization of NBS strategy. Standing at the edge of introducing high throughput genetic technologies to NBS programs with the opportunity to massively extend NBS programs and with the risk of aggravating current limitations of NBS programs, it seems overdue to include mandatory long-term follow-up of NBS cohorts into the list of screening principles and to build an international collaborative framework that enables data collection and exchange in a protected environment, integrating the perspectives of patients, families, and the society.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Yverneau M, Leroux S, Imbard A, Gleich F, Arion A, Moreau C, Nassogne MC, Szymanowski M, Tardieu M, Touati G, Bueno M, Chapman KA, Chien YH, Huemer M, Ješina P, Janssen MCH, Kölker S, Kožich V, Lavigne C, Lund AM, Mochel F, Morris A, Pons MR, Porras-Hurtado GL, Benoist JF, Damaj L, Schiff M. Influence of early identification and therapy on long-term outcomes in early-onset MTHFR deficiency. J Inherit Metab Dis 2022; 45:848-861. [PMID: 35460084 DOI: 10.1002/jimd.12504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
MTHFR deficiency is a severe inborn error of metabolism leading to impairment of the remethylation of homocysteine to methionine. Neonatal and early-onset patients mostly exhibit a life-threatening acute neurologic deterioration. Furthermore, data on early-onset patients' long-term outcomes are scarce. The aims of this study were (1) to study and describe the clinical and laboratory parameters of early-onset MTHFR-deficient patients (i.e., ≤3 months of age) and (2) to identify predictive factors for severe neurodevelopmental outcomes in a cohort with early and late onset MTHFR-deficient patients. To this end, we conducted a retrospective, multicentric, international cohort study on 72 patients with MTHFR deficiency from 32 international metabolic centres. Characteristics of the 32 patients with early-onset MTHFR deficiency were described at time of diagnosis and at the last follow-up visit. Logistic regression analysis was used to identify predictive factors of severe neurodevelopmental outcome in a broader set of patients with early and non-early-onset MTHFR deficiency. The majority of early-onset MTHFR-deficient patients (n = 32) exhibited neurologic symptoms (76%) and feeding difficulties (70%) at time of diagnosis. At the last follow-up visit (median follow-up time of 8.1 years), 76% of treated early-onset patients (n = 29) exhibited a severe neurodevelopmental outcome. Among the whole study population of 64 patients, pre-symptomatic diagnosis was independently associated with a significantly better neurodevelopmental outcome (adjusted OR 0.004, [0.002-0.232]; p = 0.003). This study provides evidence for benefits of pre-symptomatic diagnosis and appropriate therapeutic management, highlighting the need for systematic newborn screening for MTHFR deficiency and pre-symptomatic treatment that may improve outcome.
Collapse
Affiliation(s)
- Mathilde Yverneau
- Department of Child and Adolescent Medicine, Rennes Hospital, Rennes, France
| | - Stéphanie Leroux
- Department of Child and Adolescent Medicine, Rennes Hospital, Rennes, France
| | - Apolline Imbard
- Biochemistry Laboratory, Robert Debré Hospital, APHP, Paris, France
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- LYPSIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Alina Arion
- Department of Pediatrics, Caen Hospital, Caen, France
| | | | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Marie Szymanowski
- Department of Pediatrics, Estaing Hospital, Clermont-Ferrand, France
| | | | - Guy Touati
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Toulouse Hospital, Toulouse, France
| | - María Bueno
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Kimberly A Chapman
- Section of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia, USA
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Christian Lavigne
- Department of Internal Medicine, Angers University Hospital, Angers, France
| | - Allan Meldgaard Lund
- Departments of Paediatrics and Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Andrew Morris
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester
- Alder Hey Children's Hospital, Liverpool, UK
| | | | | | - Jean-François Benoist
- Biochemistry Laboratory, Robert Debré Hospital, APHP, Paris, France
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- LYPSIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Léna Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, Rennes, France
| | - Manuel Schiff
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| |
Collapse
|
12
|
Mütze U, Gleich F, Garbade SF, Plisson C, Aldámiz-Echevarría L, Arrieta F, Ballhausen D, Zielonka M, Petković Ramadža D, Baumgartner MR, Cano A, García Jiménez MC, Dionisi-Vici C, Ješina P, Blom HJ, Couce ML, Meavilla Olivas S, Mention K, Mochel F, Morris AAM, Mundy H, Redonnet-Vernhet I, Santra S, Schiff M, Servais A, Vitoria I, Huemer M, Kožich V, Kölker S. Postauthorization safety study of betaine anhydrous. J Inherit Metab Dis 2022; 45:719-733. [PMID: 35358327 DOI: 10.1002/jimd.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022]
Abstract
Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013-2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0-9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 μmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≥ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | | | | | - Francisco Arrieta
- Endocrinology & Nutrition, Metabolic Congenital Disease, H.U. Ramon y Cajal, Madrid, Spain
| | - Diana Ballhausen
- Pediatric Unit for Metabolic Diseases, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthias Zielonka
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU La Timone Enfants, Marseille, France
| | | | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Henk J Blom
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Silvia Meavilla Olivas
- Pediatrics, Gastroenterology, Hepatology and Nutrition, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Karine Mention
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Jeanne de Flandre, Lille, France
| | - Fanny Mochel
- Ap.HP, Sorbonne University, Reference Center for Adult Neurometabolic Diseases, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Andrew A M Morris
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Trust, Manchester, UK
| | - Helen Mundy
- Evelina London Children's Hospital, London, UK
| | - Isabelle Redonnet-Vernhet
- Endocrinology, Nutrition and Metabolic Diseases, Haut-Lévêque Hospital, Bordeaux University, Bordeaux, France
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Aude Servais
- Nephrology and Transplantation, MAMEA Reference Center, Necker hospital, APHP, Paris, France
| | - Isidro Vitoria
- Unit of Metabolic Disorders, Universitary Hospital La Fe, Valencia, Spain
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Kripps KA, Sremba L, Larson AA, Van Hove JLK, Nguyen H, Wright EL, Mirsky DM, Watkins D, Rosenblatt DS, Ketteridge D, Berry SA, McCandless SE, Baker PR. Methionine synthase deficiency: Variable clinical presentation and benefit of early diagnosis and treatment. J Inherit Metab Dis 2022; 45:157-168. [PMID: 34625984 DOI: 10.1002/jimd.12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.
Collapse
Affiliation(s)
- Kimberly A Kripps
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Leighann Sremba
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin A Larson
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Johan L K Van Hove
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hoanh Nguyen
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erica L Wright
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Mirsky
- Department of Radiology, University of Colorado, and Children's Hospital Colorado, Aurora, Colorado, USA
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Ketteridge
- Department of Genetics and Molecular Pathology, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Susan A Berry
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shawn E McCandless
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter R Baker
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Kölker S, Gleich F, Mütze U, Opladen T. Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Front Endocrinol (Lausanne) 2022; 13:832063. [PMID: 35317224 PMCID: PMC8934440 DOI: 10.3389/fendo.2022.832063] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Rare diseases, such as inherited metabolic diseases, have been identified as a health priority within the European Union more than 20 years ago and have become an integral part of EU health programs and European Reference Networks. Having the potential to pool data, to achieve sufficient sample size, to overcome the knowledge gap on rare diseases and to foster epidemiological and clinical research, patient registries are recognized as key instruments to evidence-based medicine for individuals with rare diseases. Patient registries can be used for multiple purposes, such as (1) describing the natural history and phenotypic diversity of rare diseases, (2) improving case definition and indication to treat, (3) identifying strategies for risk stratification and early prediction of disease severity (4), evaluating the impact of preventive, diagnostic, and therapeutic strategies on individual health, health economics, and the society, and (5) informing guideline development and policy makers. In contrast to clinical trials, patient registries aim to gather real-world evidence and to achieve generalizable results based on patient cohorts with a broad phenotypic spectrum. In order to develop a consistent and sustained framework for rare disease registries, uniform core principles have been formulated and have been formalized through the European Rare Disease Registration Infrastructure. Adherence to these core principles and compliance with the European general data protection regulations ensures that data collected and stored in patient registries can be exchanged and pooled in a protected environment. To illustrate the benefits and limitations of patient registries on rare disease research this review focuses on inherited metabolic diseases.
Collapse
|
15
|
Waheed N, Fayyaz Z, Imran A. Spectrum of clinical manifestation of methylmalonic acidemia and homocystinuria in a family of six siblings: novel combination of transcobalamin receptor defect (CD320) and cblC deficiency (MMACHC). EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Methylmalonic acidemia with homocystinuria is caused by a rare inborn error of vitamin B12 (cobalamin) metabolism. There are four complementation classes of cobalamin defects cblC, cblD, cblF, and cblJ that are responsible for combined methylmalonic acidemia and homocystinuria.
Case presentation
We report a case of a Pakistani family composed of six children diagnosed with methylmalonic acidemia and homocystinuria (MMA + HCU). Mutation analysis of siblings revealed a variable combination of c.394C>T mutation in the MMACHC gene and c.262_264del in CD320 gene. All siblings had variable age of onset, initial symptomatology, the severity of disease, and response to treatment. The maximum age of presentation was 6.5 years and the minimum age was at birth. The spectrum of symptoms ranged from a subtle learning disability to global developmental delay within the same family. None of them had a seizure disorder, megaloblastic anemia, visual disturbance, and vascular events.CD320 defect itself is very rare, and only 12 cases have been reported so far. We report six cases, four of them had homozygous MMACHC variant c.394C>T and the other two had heterozygous MMACHC mutations in c.394C>T and c.262_264del in CD 320 genes. To date, neither such case has been reported in the literature or this compound heterozygous mutation.
Conclusion
Our case report emphasizes that the diagnosis of inherited metabolic disorder in a child obviates the need to screen all siblings for the same disorder.
Collapse
|
16
|
Alsharhan H, Ahmed AA, Ali NM, Alahmad A, Albash B, Elshafie RM, Alkanderi S, Elkazzaz UM, Cyril PX, Abdelrahman RM, Elmonairy AA, Ibrahim SM, Elfeky YME, Sadik DI, Al-Enezi SD, Salloum AM, Girish Y, Al-Ali M, Ramadan DG, Alsafi R, Al-Rushood M, Bastaki L. Early Diagnosis of Classic Homocystinuria in Kuwait through Newborn Screening: A 6-Year Experience. Int J Neonatal Screen 2021; 7:ijns7030056. [PMID: 34449519 PMCID: PMC8395821 DOI: 10.3390/ijns7030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Kuwait is a small Arabian Gulf country with a high rate of consanguinity and where a national newborn screening program was expanded in October 2014 to include a wide range of endocrine and metabolic disorders. A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence. Molecular testing for five of them has revealed three previously reported pathogenic variants in the CBS gene, c.969G>A, p.(Trp323Ter); c.982G>A, p.(Asp328Asn); and the Qatari founder variant c.1006C>T, p.(Arg336Cys). This is the first study to review the screening of newborns in Kuwait for classic homocystinuria, starting with the detection of elevated blood methionine and providing a follow-up strategy for positive results, including plasma total homocysteine and amino acid analyses. Further, we have demonstrated an increase in the specificity of the current newborn screening test for classic homocystinuria by including the methionine to phenylalanine ratio along with the elevated methionine blood levels in first-tier testing. Here, we provide evidence that the newborn screening in Kuwait has led to the early detection of classic homocystinuria cases and enabled the affected individuals to lead active and productive lives.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Correspondence: ; Tel.: +965-60600106 or +965-25319486
| | - Amir A. Ahmed
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Naser M. Ali
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Ahmad Alahmad
- Molecular Genetics Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.); (S.D.A.-E.)
| | - Buthaina Albash
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Reem M. Elshafie
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Sumaya Alkanderi
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Usama M. Elkazzaz
- Newborn Screening Office, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait;
| | | | - Rehab M. Abdelrahman
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
| | - Alaa A. Elmonairy
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Samia M. Ibrahim
- Newborn Screening Office, Al-Sabah Maternity Hospital, Ministry of Health, Sulaibikhat 80901, Kuwait;
| | - Yasser M. E. Elfeky
- Newborn Screening Office, Jahra Hospital, Ministry of Health, Jahra 00020, Kuwait;
| | - Doaa I. Sadik
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Sara D. Al-Enezi
- Molecular Genetics Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.); (S.D.A.-E.)
| | - Ayman M. Salloum
- Biochemistry Laboratory, Al-Sabah Hospital, Ministry of Health, Shuwaikh 70051, Kuwait;
| | - Yadav Girish
- Clinical Biochemistry Laboratory, Ibn Sina Hospital, Ministry of Health, Shuwaikh, P.O. Box 25427, Safat 13115, Kuwait;
| | - Mohammad Al-Ali
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Dina G. Ramadan
- Department of Pediatrics, Al-Sabah Hospital, Ministry of Health, Shuweikh 70051, Kuwait;
| | - Rasha Alsafi
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait;
| | - May Al-Rushood
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
| | - Laila Bastaki
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| |
Collapse
|
17
|
Diagnosis of Classic Homocystinuria in Two Boys Presenting with Acute Cerebral Venous Thrombosis and Neurologic Dysfunction after Normal Newborn Screening. Int J Neonatal Screen 2021; 7:ijns7030048. [PMID: 34449521 PMCID: PMC8395908 DOI: 10.3390/ijns7030048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Homocystinuria, caused by cystathionine β-synthase deficiency, is a rare inherited disorder involving metabolism of methionine. Impaired synthesis of cystathionine leads to accumulation of homocysteine that affects several organ systems leading to abnormalities in the skeletal, cardiovascular, ophthalmic and central nervous systems. We report a 14-month-old and a 7-year-old boy who presented with neurologic dysfunction and were found to have cerebral venous sinus thromboses on brain magnetic resonance imaging (MRI)/magnetic resonance venogram (MRV) and metabolic and hypercoagulable work-up were consistent with classic homocystinuria. The 14-month-old boy had normal newborn screening. The 7-year-old boy initially had an abnormal newborn screen for homocystinuria but second tier test that consisted of total homocysteine was normal, so his newborn screen was reported as normal. With the advent of expanded newborn screening many treatable metabolic disorders are detected before affected infants and children become symptomatic. Methionine is the primary target in newborn screening for homocystinuria and total homocysteine is a secondary target. Screening is usually performed after 24-48 h of life in most states in the US and some states perform a second screen as a policy on all tested newborns or based on when the initial newborn screen was performed. This is done in hopes of detecting infants who may have been missed on their first screen. In the United Kingdom, NBS using dried blood spot is performed at 5 to 8 days after birth. It is universally known that methionine is a poor target and newborn screening laboratories have used different cutoffs for a positive screen. Reducing the methionine cutoff increases the sensitivity but not necessarily the specificity of the test and increasing the cutoff will miss babies who may have HCU whose levels may not be high enough to be detected at their age of ascertainment. It is not clear whether adjusting methionine level to decrease the false negative rates combined with total homocysteine as a second-tier test can be used effectively and feasibly to detect newborns with HCU. Between December 2005 and December 2020, 827,083 newborns were screened in Kentucky by MS/MS. Kentucky NBS program uses the postanalytical tools offered by the Collaborative Laboratory Integrated Reports (CLIR) project which considers gestational age and birthweight. One case of classical homocystinuria was detected and two were missed on first and second tier tests respectively. The newborn that had confirmed classical homocystinuria was one of twenty-three newborns that were referred for second tier test because of elevated methionine (cutoff is >60 µmol/L) and/or Met/Phe ratio (cutoff is >1.0); all 23 dried blood spots had elevated total homocysteine. One of the subjects of this case report had a normal methionine on initial screen and the other had a normal second-tier total homocysteine level. The performance of methionine and total homocysteine as screening analytes for homocystinuria suggest that it may be time for newborn screening programs to consider adopting next generation sequencing (NGS) platforms as alternate modality of metabolic newborn screening. Because of cost considerations, newborn screening programs may not want to adopt NGS, but the downstream healthcare cost incurred due to missed cases and the associated morbidity of affected persons far exceed costs to newborn screen programs. Since NGS is becoming more widely available and inexpensive, it may be feasible to change testing algorithms to use Newborn Metabolic NGS as the primary mode of testing on dry blood specimens with confirmation with biochemical testing. Some commercial laboratories have Newborn Screening Metabolic gene panel that includes all metabolic disorders on the most comprehensive newborn screening panel in addition to many other conditions that are not on the panel. A more targeted NGS panel can be designed that may not cost much and eventually help avoid the pitfalls associated with delayed diagnosis and cost of screening.
Collapse
|
18
|
Kagawa R, Tajima G, Maeda T, Sakura F, Nakamura-Utsunomiya A, Hara K, Nishimura Y, Yuasa M, Shigematsu Y, Tanaka H, Fujihara S, Yoshii C, Okada S. Pilot Study on Neonatal Screening for Methylmalonic Acidemia Caused by Defects in the Adenosylcobalamin Synthesis Pathway and Homocystinuria Caused by Defects in Homocysteine Remethylation. Int J Neonatal Screen 2021; 7:ijns7030039. [PMID: 34287232 PMCID: PMC8293178 DOI: 10.3390/ijns7030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neonatal screening (NS) for methylmalonic acidemia uses propionylcarnitine (C3) as a primary index, which is insufficiently sensitive at detecting methylmalonic acidemia caused by defects in the adenosylcobalamin synthesis pathway. Moreover, homocystinuria from cystathionine β-synthase deficiency is screened by detecting hypermethioninemia, but methionine levels decrease in homocystinuria caused by defects in homocysteine remethylation. To establish NS detection of methylmalonic acidemia and homocystinuria of these subtypes, we evaluated the utility of indices (1) C3 ≥ 3.6 μmol/L and C3/acetylcarnitine (C2) ≥ 0.23, (2) C3/methionine ≥ 0.25, and (3) methionine < 10 μmol/L, by retrospectively applying them to NS data of 59,207 newborns. We found positive results in 116 subjects for index (1), 37 for (2), and 15 for (3). Second-tier tests revealed that for index 1, methylmalonate (MMA) was elevated in two cases, and MMA and total homocysteine (tHcy) were elevated in two cases; for index 2 that MMA was elevated in one case; and for index 3 that tHcy was elevated in one case. Though data were anonymized, two cases identified by index 1 had been diagnosed with maternal vitamin B12 deficiency during NS. Methylene tetrahydrofolate reductase deficiency was confirmed for the case identified by index 3, which was examined because an elder sibling was affected by the same disease. Based on these data, a prospective NS study is underway.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8551, Japan; (R.K.); (F.S.); (S.O.)
| | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8551, Japan; (R.K.); (F.S.); (S.O.)
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
- Correspondence: ; Tel.: +81-3-5494-7133
| | - Takako Maeda
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8551, Japan; (R.K.); (F.S.); (S.O.)
| | | | - Keiichi Hara
- Department of Pediatrics, National Hospital Organization Kure Medical Center and Chugoku Cancete Center, Kure 737-0023, Japan;
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Naka-Ku, Hiroshima 730-8518, Japan;
| | - Miori Yuasa
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan; (M.Y.); (Y.S.)
| | - Yosuke Shigematsu
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan; (M.Y.); (Y.S.)
| | - Hiromi Tanaka
- Hiroshima City Medical Association Clinical Laboratory, Naka-ku, Hiroshima 730-8611, Japan; (H.T.); (S.F.); (C.Y.)
| | - Saki Fujihara
- Hiroshima City Medical Association Clinical Laboratory, Naka-ku, Hiroshima 730-8611, Japan; (H.T.); (S.F.); (C.Y.)
| | - Chiyoko Yoshii
- Hiroshima City Medical Association Clinical Laboratory, Naka-ku, Hiroshima 730-8611, Japan; (H.T.); (S.F.); (C.Y.)
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima 734-8551, Japan; (R.K.); (F.S.); (S.O.)
| |
Collapse
|
19
|
Shifting landscapes of human MTHFR missense-variant effects. Am J Hum Genet 2021; 108:1283-1300. [PMID: 34214447 PMCID: PMC8322931 DOI: 10.1016/j.ajhg.2021.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.
Collapse
|
20
|
Kožich V, Sokolová J, Morris AAM, Pavlíková M, Gleich F, Kölker S, Krijt J, Dionisi‐Vici C, Baumgartner MR, Blom HJ, Huemer M, E‐HOD consortium Aldámiz‐EchevarríaLuisArantesRodrigo RezendeArrietaFranciscoBlasco‐AlonsoJavierBrouwersMartijnBrunner‐KrainzMichaelaBuenoMaríaPeláezRosa BurgosCanoAlineCouceMaría‐LuzCrushellEllenFiciciogluCanFornyPatrickGarcía JiménezMaría ConcepciónGasparAnaGonzález‐Lamuño LeguinaDomingoChapmanKimberly A.ChienYin‐HsiuJanssenMirian C.H.JešinaPavelLachmannRobinLavigneChristianLundAllan M.LüsebrinkNataliaMaillotFrancoisMartinsAna MariaOlivasSilvia MeavillaMentionKarineMochelFannyMonavariAhmadMoreiraSóniaMorenoCarolina AraujoMuačević‐KatanecDianaMundyHelenMurphyElaineOlivieriGiorgiaPaquayStéphaniePedrón‐GinerConsueloQuintanaLuís PeñaPorras‐HurtadoGloria L.FrailePilar QuijadaRedonnet‐VernhetIsabelleRenningsAlexander J.M.PonsMònica RuizSantraSaikatServaisAudeSchiaffinoMaria CristinaSchiffManuelSchwahnBernd C.SchwartzIda V.D.SrembaLeighann J.StainforthColletteStepienKarolina M.Sykut‐CegielskaJolantaTerryAllysonTranChristelMiñanaIsidro VitoriaVives‐PiñeraInmaculadaWilliamsMoniqueZemanJiříZielonkaMatthias. Cystathionine β-synthase deficiency in the E-HOD registry-part I: pyridoxine responsiveness as a determinant of biochemical and clinical phenotype at diagnosis. J Inherit Metab Dis 2021; 44:677-692. [PMID: 33295057 PMCID: PMC8247016 DOI: 10.1002/jimd.12338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency has a wide clinical spectrum, ranging from neurodevelopmental problems, lens dislocation and marfanoid features in early childhood to adult onset disease with predominantly thromboembolic complications. We have analysed clinical and laboratory data at the time of diagnosis in 328 patients with CBS deficiency from the E-HOD (European network and registry for Homocystinurias and methylation Defects) registry. We developed comprehensive criteria to classify patients into four groups of pyridoxine responsivity: non-responders (NR), partial, full and extreme responders (PR, FR and ER, respectively). All groups showed overlapping concentrations of plasma total homocysteine while pyridoxine responsiveness inversely correlated with plasma/serum methionine concentrations. The FR and ER groups had a later age of onset and diagnosis and a longer diagnostic delay than NR and PR patients. Lens dislocation was common in all groups except ER but the age of dislocation increased with increasing responsiveness. Developmental delay was commonest in the NR group while no ER patient had cognitive impairment. Thromboembolism was the commonest presenting feature in ER patients, whereas it was least likely at presentation in the NR group. This probably is due to the differences in ages at presentation: all groups had a similar number of thromboembolic events per 1000 patient-years. Clinical severity of CBS deficiency depends on the degree of pyridoxine responsiveness. Therefore, a standardised pyridoxine-responsiveness test in newly diagnosed patients and a critical review of previous assessments is indispensable to ensure adequate therapy and to prevent or reduce long-term complications.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Andrew A. M. Morris
- Manchester Centre for Genomic MedicineManchester University Hospitals NHS TrustManchesterUK
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University‐Faculty of Mathematics and PhysicsPragueCzech Republic
| | - Florian Gleich
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent MedicineUniversity HospitalHeidelbergGermany
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent MedicineUniversity HospitalHeidelbergGermany
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Carlo Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Research Hospital, IRCCSRomeItaly
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- University of ZürichZürichSwitzerland
| | - Henk J. Blom
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus Medical CenterRotterdamNetherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Department of PediatricsLandeskrankenhaus BregenzBregenzAustria
| | | |
Collapse
|
21
|
Morrison T, Bösch F, Landolt MA, Kožich V, Huemer M, Morris AAM. Homocystinuria patient and caregiver survey: experiences of diagnosis and patient satisfaction. Orphanet J Rare Dis 2021; 16:124. [PMID: 33691747 PMCID: PMC7945666 DOI: 10.1186/s13023-021-01764-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background The main genetic causes of homocystinuria are cystathionine beta-synthase (CBS) deficiency and the remethylation defects. Many patients present in childhood but milder forms may present later in life. Some countries have newborn screening programs for the homocystinurias but these do not detect all patients.
Results HCU Network Australia is one of the very few support groups for patients with homocystinurias. Here we report the results of its survey of 143 patients and caregivers from 22 countries, evaluating current diagnostic pathways and management for the homocystinurias. Most (110) of the responses related to patients with CBS deficiency. The diagnosis was made by newborn screening in 20% of patients and in 50% of the others within 1 year of the initial symptom but in 12.5% it took over 15 years. The delay was attributed mainly to ignorance of the disease. Physicians need to learn to measure homocysteine concentrations in children with neurodevelopmental problems, and in patients with heterogeneous symptoms such as thromboembolism, dislocation of the optic lens, haemolytic uraemic syndrome, and psychiatric disease. Even when the diagnosis is made, the way it is communicated is sometimes poor. Early-onset CBS deficiency usually requires a low-protein diet with amino acid supplements. More than a third of the participants reported problems with the availability or cost of treatment. Only half of the patients always took their amino acid mixture. In contrast, good adherence to the protein restriction was reported in 98% but 80% said it was hard, time-consuming and caused unhappiness. Conclusions There is often a long delay in diagnosing the homocystinurias unless this is achieved by newborn screening; this survey also highlights problems with the availability and cost of treatment and the palatability of protein substitutes.
Collapse
Affiliation(s)
- T Morrison
- HCU Network Australia, Baulkham Hills, Australia
| | - F Bösch
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - M A Landolt
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,Department of Psychosomatics and Psychiatry and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - V Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, General University Hospital, Prague, Czech Republic
| | - M Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland. .,Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria.
| | - A A M Morris
- Division of Evolution and Genomic Sciences, Institute of Human Development, University of Manchester, Manchester, UK.,Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
22
|
Jakubowski H. Proteomic exploration of cystathionine β-synthase deficiency: implications for the clinic. Expert Rev Proteomics 2021; 17:751-765. [PMID: 33320032 DOI: 10.1080/14789450.2020.1865160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Homocystinuria due to cystathionine β-synthase (CBS) deficiency, the most frequent inborn error of sulfur amino acid metabolism, is characterized biochemically by severely elevated homocysteine (Hcy) and related metabolites, such as Hcy-thiolactone and N-Hcy-protein. CBS deficiency reduces life span and causes pathological abnormalities affecting most organ systems in the human body, including the cardiovascular (thrombosis, stroke), skeletal/connective tissue (osteoporosis, thin/non-elastic skin, thin hair), and central nervous systems (mental retardation, seizures), as well as the liver (fatty changes), and the eye (ectopia lentis, myopia). Molecular basis of these abnormalities were largely unknown and available treatments remain ineffective. Areas covered: Proteomic and transcriptomic studies over the past decade or so, have significantly contributed to our understanding of mechanisms by which the CBS enzyme deficiency leads to clinical manifestations associated with it. Expert opinion: Recent findings, discussed in this review, highlight the involvement of dysregulated proteostasis in pathologies associated with CBS deficiency, including thromboembolism, stroke, neurologic impairment, connective tissue/collagen abnormalities, hair defects, and hepatic toxicity. To ameliorate these pathologies, pharmacological, enzyme replacement, and gene transfer therapies are being developed.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań, Poland.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, International Center for Public Health , Newark, NJ USA
| |
Collapse
|
23
|
Stinton C, Fraser H, Geppert J, Johnson R, Connock M, Johnson S, Clarke A, Taylor-Phillips S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots-A Systematic Review of Test Accuracy. Front Pediatr 2021; 9:606194. [PMID: 33816395 PMCID: PMC8017228 DOI: 10.3389/fped.2021.606194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare autosomal recessive fatty acid β-oxidation disorders. Their clinical presentations are variable, and premature death is common. They are included in newborn blood spot screening programs in many countries around the world. The current process of screening, through the measurement of acylcarnitines (a metabolic by-product) in dried blood spots with tandem mass spectrometry, is subject to uncertainty regarding test accuracy. Methods: We conducted a systematic review of literature published up to 19th June 2018. We included studies that investigated newborn screening for LCHAD or MTP deficiencies by tandem mass spectrometry of acylcarnitines in dried blood spots. The reference standards were urine organic acids, blood acylcarnitine profiles, enzyme analysis in cultured fibroblasts or lymphocytes, mutation analysis, or at least 10-year follow-up. The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Assessment of titles, abstracts, and full-text papers and quality appraisal were carried out independently by two reviewers. One reviewer extracted study data. This was checked by a second reviewer. Results: Ten studies provided data on test accuracy. LCHAD or MTP deficiencies were identified in 23 babies. No cases of LCHAD/MTP deficiencies were identified in four studies. PPV ranged from 0% (zero true positives and 28 false positives from 276,565 babies screened) to 100% (13 true positives and zero false positives from 2,037,824 babies screened). Sensitivity, specificity, and NPV could not be calculated as there was no systematic follow-up of babies who screened negative. Conclusions: Test accuracy estimates of screening for LCHAD and MTP deficiencies with tandem mass spectrometry measurement of acylcarnitines in dried blood were variable in terms of PPVs. Screening methods (including markers and thresholds) varied between studies, and sensitivity, specificity, and NPVs are unknown.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Johnson
- School of Nursing, Midwifery and Health, Coventry University, Coventry, United Kingdom
| | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, United Kingdom
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
24
|
Kožich V, Majtan T. Inherited disorders of sulfur amino acid metabolism: recent advances in therapy. Curr Opin Clin Nutr Metab Care 2021; 24:62-70. [PMID: 33060459 DOI: 10.1097/mco.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Metabolism of sulfur amino acids (SAA) provides compounds important for many cellular functions. Inherited disorders of SAA metabolism are typically severe multisystemic diseases affecting brain, liver, connective tissue, or vasculature. The review summarizes the present therapeutic approaches and advances in identifying novel treatment targets, and provides an overview of new therapies. RECENT FINDINGS Current treatments of genetic disorders of SAA metabolism are primarily based on modulation of affected pathways by dietary measures and provision of lacking products or scavenging of toxic molecules. Recent studies identified additional therapeutic targets distant from the primary defects and explored ideas envisioning novel treatments, such as chaperone and gene therapy. Recombinant protein production and engineering resulted in development and clinical testing of enzyme therapies for cystathionine β-synthase deficiency, the most common inborn error of SAA metabolism. SUMMARY Complex regulation of pathways involved in SAA metabolism and cellular consequences of genetic defects in SAA metabolism are only partially understood. There is a pressing need to increase substantially our knowledge of the disease mechanisms to develop more effective therapies for patients suffering from these rare disorders.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Czech Republic
| | - Tomas Majtan
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Tyagi SC, Stanisic D, Singh M. Epigenetic memory: gene writer, eraser and homocysteine. Mol Cell Biochem 2020; 476:507-512. [PMID: 33030620 DOI: 10.1007/s11010-020-03895-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper "in-printing and off-printing" of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Chang KJ, Zhao Z, Shen HR, Bing Q, Li N, Guo X, Hu J. Adolescent/adult-onset homocysteine remethylation disorders characterized by gait disturbance with/without psychiatric symptoms and cognitive decline: a series of seven cases. Neurol Sci 2020; 42:1987-1993. [PMID: 33000330 DOI: 10.1007/s10072-020-04756-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Homocysteine remethylation disorders are rare inherited disorders caused by a deficient activity of the enzymes involved in the remethylation of homocysteine to methionine. The adolescent/adult-onset remethylation disorders are rarely reported. We analyzed the clinical and genetic characteristics of seven cases with adolescent/adult remethylation disorders, including 5 cases of the cobalamin C disease (cblC) and 2 cases of the methylenetetrahydrofolate reductase deficiency. The average onset age was 21.1 (range 14 to 40) years. All patients complained of gait disturbances. Other common symptoms included psychiatric symptoms (5/7) and cognitive decline (4/7). Acute encephalopathy, dysarthria, anorexia, vomiting, ketoacidosis, anemia, cataract, and hand tremor were also observed. The mean total homocysteine in serum when the patients were diagnosed was 94.6 (range 53.1-154.5) mol/L. Electrophysiological studies revealed neuropathy in the lower limbs (6/7). The brain MRI showed reversible altered signal from the dorsal portions of the cerebellar hemispheres (1/7), periventricular hyperintensity (2/7), and delayed/impaired myelination (2/7). The sural nerve biopsy performed in one case showed a modest loss of myelinated fibers. Five patients showed heterozygous mutations of the MMACHC gene, including c.482G>A (5/5), c.609G>A (2/5), and c.658-660delAAG (3/5). Two patients showed heterozygous mutations of the MTHFR gene, including c.698C>A (2/2), c.698C>G (1/2), and c.236+1G>A (1/2). The patients responded well to the treatments with significant improvements. Adolescent/adult-onset remethylation disorders are easily misdiagnosed. We recommend testing the serum homocysteine concentrations in young/adult patients with unexplained neuro-psychotic symptoms. Furthermore, individuals with significantly elevated serum homocysteine concentrations should be further tested by organic acid screening and genetic analysis.
Collapse
Affiliation(s)
- Kai-Jie Chang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Hong-Rui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Nan Li
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Xuan Guo
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, No 139 Road Ziqiang, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
28
|
Pickens CA, Sternberg M, Seeterlin M, De Jesús VR, Morrissey M, Manning A, Bhakta S, Held PK, Mei J, Cuthbert C, Petritis K. Harmonizing Newborn Screening Laboratory Proficiency Test Results Using the CDC NSQAP Reference Materials. Int J Neonatal Screen 2020; 6:75. [PMID: 33123642 PMCID: PMC7570198 DOI: 10.3390/ijns6030075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) laboratories cannot accurately compare mass spectrometry-derived results and cutoff values due to differences in testing methodologies. The objective of this study was to assess harmonization of laboratory proficiency test (PT) results using quality control (QC) data. Newborn Screening Quality Assurance Program (NSQAP) QC and PT data reported from 302 laboratories in 2019 were used to compare results among laboratories. QC materials were provided as dried blood spot cards which included a base pool and the base pool enriched with specific concentrations of metabolites in a linear range. QC data reported by laboratories were regressed on QC data reported by the Centers for Disease Control and Prevention (CDC), and laboratory's regression parameters were used to harmonize their PT result. In general, harmonization tended to reduce overall variation in PT data across laboratories. The metabolites glutarylcarnitine (C5DC), tyrosine, and phenylalanine were displayed to highlight inter- and intra-method variability in NBS results. Several limitations were identified using retrospective data for harmonization, and future studies will address these limitations to further assess feasibility of using NSQAP QC data to harmonize PT data. Harmonizing NBS data using common QC materials appears promising to aid result comparison between laboratories.
Collapse
Affiliation(s)
- Charles Austin Pickens
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Newborn Screening and Molecular Biology Branch, MS F19, Atlanta, GA 30341, USA; (C.A.P.); (M.S.); (J.M.); (C.C.)
| | - Maya Sternberg
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Newborn Screening and Molecular Biology Branch, MS F19, Atlanta, GA 30341, USA; (C.A.P.); (M.S.); (J.M.); (C.C.)
| | - Mary Seeterlin
- Michigan Department of Community Health, Lansing, MI 49221, USA;
| | - Víctor R De Jesús
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA 30341, USA;
| | - Mark Morrissey
- Wadsworth Center/New York State Department of Health, Albany, NY 12201-0509, USA;
| | - Adrienne Manning
- Katherine A. Kelley State Public Health Laboratory, Connecticut Department of Public Health, Rocky Hill, CT 06067, USA;
| | - Sonal Bhakta
- Arizona Department of Health Services, Office of Newborn Screening, Phoenix, AZ 85007, USA;
| | - Patrice K Held
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Joanne Mei
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Newborn Screening and Molecular Biology Branch, MS F19, Atlanta, GA 30341, USA; (C.A.P.); (M.S.); (J.M.); (C.C.)
| | - Carla Cuthbert
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Newborn Screening and Molecular Biology Branch, MS F19, Atlanta, GA 30341, USA; (C.A.P.); (M.S.); (J.M.); (C.C.)
| | - Konstantinos Petritis
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Newborn Screening and Molecular Biology Branch, MS F19, Atlanta, GA 30341, USA; (C.A.P.); (M.S.); (J.M.); (C.C.)
| |
Collapse
|
29
|
Ames EG, Scott AJ, Pappas KB, Moloney SM, Conway RL, Ahmad A. A cautionary tale of pyridoxine toxicity in cystathionine beta-synthase deficiency detected by two-tier newborn screening highlights the need for clear pyridoxine dosing guidelines. Am J Med Genet A 2020; 182:2704-2708. [PMID: 32820583 DOI: 10.1002/ajmg.a.61815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022]
Abstract
Classic homocystinuria is due to deficiency of cystathionine beta-synthase (CBS), a pyridoxine-dependent enzyme that, depending on the molecular variants, may be co-factor responsive. Elevated methionine is often used as the primary analyte to detect CBS deficiency (CBSD) on newborn screening (NBS), but is limited by increased detection of other biochemical disorders with less clear clinical significance such as methionine aminotransferase (MAT) I/III heterozygotes. Our state has implemented a two-tier NBS algorithm for CBSD that successfully reduced the number of MATI/III heterozygotes, yet effectively detected a mild, co-factor responsive form of CBSD. After initial diagnosis, newborns with CBSD often undergo a pyridoxine challenge with high-dose pyridoxine to determine responsiveness. Here we describe our NBS-identified patient with a mild form of pyridoxine responsive CBSD who developed respiratory failure and rhabdomyolysis consistent with pyridoxine toxicity during a pyridoxine challenge. This case highlights the need for weight-based dosing and duration recommendations for pyridoxine challenge in neonates.
Collapse
Affiliation(s)
- Elizabeth G Ames
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Anthony J Scott
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kara B Pappas
- Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Shawn M Moloney
- Metabolic Newborn Screening Laboratory, Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, Michigan, USA
| | - Robert L Conway
- Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Ayesha Ahmad
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Screening of Heteroaromatic Scaffolds against Cystathionine Beta-Synthase Enables Identification of Substituted Pyrazolo[3,4-c]Pyridines as Potent and Selective Orthosteric Inhibitors. Molecules 2020; 25:molecules25163739. [PMID: 32824311 PMCID: PMC7465669 DOI: 10.3390/molecules25163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022] Open
Abstract
Cystathionine β-synthase (CBS) is a key enzyme in the production of the signaling molecule hydrogen sulfide, deregulation of which is known to contribute to a range of serious pathological states. Involvement of hydrogen sulfide in pathways of paramount importance for cellular homeostasis renders CBS a promising drug target. An in-house focused library of heteroaromatic compounds was screened for CBS modulators by the methylene blue assay and a pyrazolopyridine derivative with a promising CBS inhibitory potential was discovered. The compound activity was readily comparable to the most potent CBS inhibitor currently known, aminoacetic acid, while a promising specificity over the related cystathionine γ-lyase was identified. To rule out any possibility that the inhibitor may bind the enzyme regulatory domain due to its high structural similarity with cofactor s-adenosylmethionine, differential scanning fluorimetry was employed. A sub-scaffold search guided follow-up screening of related compounds, providing preliminary structure-activity relationships with respect to requisites for efficient CBS inhibition by this group of heterocycles. Subsequently, a hypothesis regarding the exact binding mode of the inhibitor was devised on the basis of the available structure-activity relationships (SAR) and a deep neural networks analysis and further supported by induced-fit docking calculations.
Collapse
|
31
|
Yamada K, Yokoyama K, Aoki K, Taketani T, Yamaguchi S. Long-Term Outcomes of Adult Patients with Homocystinuria before and after Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6030060. [PMID: 33239586 PMCID: PMC7569964 DOI: 10.3390/ijns6030060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Homocystinuria (HCU) is a rare inherited metabolic disease. In Japan, newborn screening (NBS) for HCU (cystathionine β-synthase deficiency) was initiated in 1977. We compared the outcomes between patients detected by NBS (NBS group) and clinically detected patients (non-NBS group). METHODS We administered questionnaires about clinical symptoms and social conditions to 16 attending physicians of 19 adult HCU patients treated with methionine-free formula. RESULTS Eighteen patients (nine patients each in the NBS and non-NBS groups) participated. The frequency of patients with ocular, vascular, central nervous system, and skeletal symptoms in the NBS group was lower than that in the non-NBS group. Intellectual disability was observed in one and eight patients in the NBS and non-NBS groups, respectively. Concerning their social conditions, all patients in the NBS group were employed or still attending school, while only two patients in the non-NBS group were employed. Three of the four patients who discontinued treatment presented some symptoms, even in the NBS group. CONCLUSION The social and intellectual outcomes of adult Japanese patients with HCU detected by NBS were favorable. However, even in the patients in the NBS group, some symptoms might not be preventable without continuous treatment.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan; (T.T.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2219; Fax: +81-853-20-2215
| | - Kazunori Yokoyama
- Secretariat of Special Formula, Aiiku Maternal and Child Health Center, Imperial Gift Foundation Boshi-Aiiku-Kai, 5-6-8, Minami Asabu, Minato-ku, Tokyo 106-8580, Japan; (K.Y.); (K.A.)
| | - Kikumaro Aoki
- Secretariat of Special Formula, Aiiku Maternal and Child Health Center, Imperial Gift Foundation Boshi-Aiiku-Kai, 5-6-8, Minami Asabu, Minato-ku, Tokyo 106-8580, Japan; (K.Y.); (K.A.)
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan; (T.T.); (S.Y.)
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan; (T.T.); (S.Y.)
| |
Collapse
|
32
|
Gavrilov DK, Piazza AL, Pino G, Turgeon C, Matern D, Oglesbee D, Raymond K, Tortorelli S, Rinaldo P. The Combined Impact of CLIR Post-Analytical Tools and Second Tier Testing on the Performance of Newborn Screening for Disorders of Propionate, Methionine, and Cobalamin Metabolism. Int J Neonatal Screen 2020; 6:33. [PMID: 33073028 PMCID: PMC7423003 DOI: 10.3390/ijns6020033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The expansion of the recommend uniform screening panel to include more than 50 primary and secondary target conditions has resulted in a substantial increase of false positive results. As an alternative to subjective manipulation of cutoff values and overutilization of molecular testing, here we describe the performance outcome of an algorithm for disorders of methionine, cobalamin, and propionate metabolism that includes: (1) first tier screening inclusive of the broadest available spectrum of markers measured by tandem mass spectrometry; (2) integration of all results into a score of likelihood of disease for each target condition calculated by post-analytical interpretive tools created byCollaborative Laboratory Integrated Reports (CLIR), a multivariate pattern recognition software; and (3) further evaluation of abnormal scores by a second tier test measuring homocysteine, methylmalonic acid, and methylcitric acid. This approach can consistently reduce false positive rates to a <0.01% level, which is the threshold of precision newborn screening. We postulate that broader adoption of this algorithm could lead to substantial savings in health care expenditures. More importantly, it could prevent the stress and anxiety experienced by many families when faced with an abnormal newborn screening result that is later resolved as a false positive outcome.
Collapse
Affiliation(s)
- Dimitar K Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Amy L Piazza
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Gisele Pino
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Coleman Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.L.P.); (G.P.); (C.T.); (D.M.); (D.O.); (K.R.); (S.T.); (P.R.)
| |
Collapse
|
33
|
Ricci D, Martinelli D, Ferrantini G, Lucibello S, Gambardella ML, Olivieri G, Chieffo D, Battaglia D, Diodato D, Iarossi G, Donati AM, Dionisi-Vici C, Battini R, Mercuri EM. Early neurodevelopmental characterization in children with cobalamin C/defect. J Inherit Metab Dis 2020; 43:367-374. [PMID: 31503356 DOI: 10.1002/jimd.12171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023]
Abstract
Cobalamin C (cblC) defect is the most common inherited disorder of cobalamin metabolism. Developmental delay, behavioral problems, and maculopathy are common, but they have not been systematically investigated. The aim of this study was to define early neurodevelopment in cblC patients and the possible contribution of different factors, such as mode of diagnosis, age at diagnosis, presence of brain lesions and epilepsy. Children up to the age of 4 years with a visual acuity ≥1/10 were evaluated using the Griffiths' Mental Development Scales. Eighteen children were enrolled (age range 12-48 months). Four were diagnosed by newborn screening (NBS); in the others mean age at diagnosis was 3.5 months (range 0.3-18 months). Eight had seizures: three in the first year, and five after the second year of life. Fourteen had brain lesions on magnetic resonance imaging (MRI). Neurovisual assessment evidenced low visual acuity (<3/10) in 4/18. NBS diagnosed patients had higher general and subquotients neurodevelopmental scores, normal brain MRI, and no epilepsy. The others showed a progressive reduction of the developmental quotient with age and language impairment, which was evident after 24 months of age. Our findings showed a progressive neurodevelopmental deterioration and a specific fall in language development after 24 months in cblC defect. The presence of brain lesions and epilepsy was associated with a worst neurodevelopmental outcome. NBS, avoiding major disease-related events and allowing an earlier treatment initiation, appeared to have a protective effect on the development of brain lesions and to promote a more favorable neurodevelopment.
Collapse
Affiliation(s)
- Daniela Ricci
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
- National Centre of Services and Research for the Prevention of Blindness and Visual Rehabilitation of Visually Impaired, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gloria Ferrantini
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Simona Lucibello
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - MLuigia Gambardella
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Giorgia Olivieri
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
- Division of Metabolism, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Daniela Chieffo
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Domenica Battaglia
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Daria Diodato
- Division of Metabolism, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giancarlo Iarossi
- Division of Metabolism, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alice M Donati
- Unit of Metabolic and Muscular Diseases, A. Meyer Children Hospital, Florence, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Eugenio M Mercuri
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
- Nemo Clinical Centre, Policlinico Gemelli Foundation, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Sun S, Weile J, Verby M, Wu Y, Wang Y, Cote AG, Fotiadou I, Kitaygorodsky J, Vidal M, Rine J, Ješina P, Kožich V, Roth FP. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med 2020; 12:13. [PMID: 32000841 PMCID: PMC6993387 DOI: 10.1186/s13073-020-0711-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/10/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.
Collapse
Affiliation(s)
- Song Sun
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123, Uppsala, Sweden
| | - Jochen Weile
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | - Marta Verby
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Yingzhou Wu
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Atina G Cote
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Iosifina Fotiadou
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Julia Kitaygorodsky
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasper Rine
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Pavel Ješina
- Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08, Praha 2, Czech Republic
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08, Praha 2, Czech Republic.
| | - Frederick P Roth
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
35
|
Akahoshi N, Handa H, Takemoto R, Kamata S, Yoshida M, Onaka T, Ishii I. Preeclampsia-Like Features and Partial Lactation Failure in Mice Lacking Cystathionine γ-Lyase-An Animal Model of Cystathioninuria. Int J Mol Sci 2019; 20:ijms20143507. [PMID: 31319489 PMCID: PMC6679037 DOI: 10.3390/ijms20143507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
Elevated plasma homocysteine levels are considered as a risk factor for cardiovascular diseases as well as preeclampsia—a pregnancy disorder characterized by hypertension and proteinuria. We previously generated mice lacking cystathionine γ-lyase (Cth) as cystathioninuria models and found them to be with cystathioninemia/homocysteinemia. We investigated whether Cth-deficient (Cth−/−) pregnant mice display any features of preeclampsia. Cth−/− females developed normally but showed mild hypertension (~10 mmHg systolic blood pressure elevation) in late pregnancy and mild proteinuria throughout development/pregnancy. Cth−/− dams had normal numbers of pups and exhibited normal maternal behavior except slightly lower breastfeeding activity. However, half of them could not raise their pups owing to defective lactation; they could produce/store the first milk in their mammary glands but not often provide milk to their pups after the first ejection. The serum oxytocin levels and oxytocin receptor expression in the mammary glands were comparable between wild-type and Cth−/− dams, but the contraction responses of mammary gland myoepithelial cells to oxytocin were significantly lower in Cth−/− dams. The contraction responses to oxytocin were lower in uteruses isolated from Cth−/− mice. Our results suggest that elevated homocysteine or other unknown factors in preeclampsia-like Cth−/− dams interfere with oxytocin that regulates milk ejection reflex.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Hiroki Handa
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Rintaro Takemoto
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Shotaro Kamata
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Masahide Yoshida
- Department of Physiology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan.
| |
Collapse
|
36
|
Wasim M, Khan HN, Ayesha H, Goorden SMI, Vaz FM, van Karnebeek CDM, Awan FR. Biochemical Screening of Intellectually Disabled Patients: A Stepping Stone to Initiate a Newborn Screening Program in Pakistan. Front Neurol 2019; 10:762. [PMID: 31379716 PMCID: PMC6650569 DOI: 10.3389/fneur.2019.00762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are rare group of genetic disorders comprising of more than 1,000 different types. Around 200 of IEMs are potentially treatable through diet, pharmacological and other therapies, if diagnosed earlier in life. IEMs can be diagnosed early through newborn screening (NBS) programs, which are in place in most of the developed countries. However, establishing a NBS in a developing country is a challenging task due to scarcity of disease related data, large population size, poor economy, and burden of other common disorders. Since, not enough data is available for the prevalence of IEMs in Pakistan; therefore, in this study, we set out to find the prevalence of various treatable IEMs in a cohort of intellectually disabled patients suspected for IEMs, which will help us to initiate a NBS program for the most frequent IEMs in Pakistan. Therefore, a total of 429 intellectually disabled (IQ <70) patient samples were collected from Pakistan. A subset of 113 patient samples was selected based on the clinical information for the detailed biochemical screening. Advance analytical techniques like, Amino Acid Analyzer, GC-MS, UHPLC-MS, and MS/MS were used to screen for different treatable IEMs like aminoacidopathies, fatty acid β-oxidation disorders and mucopolysaccharidoses (MPS) etc. A total of 14 patients were diagnosed with an IEM i.e., 9 with homocystinuria, 2 with MPS, 2 with Guanidinoacetate methyltransferase (GAMT) deficiency and 1 with sitosterolemia. These IEMs are found frequent in the collected patient samples from Pakistan. Thus, present study can help to take an initiative step to start a NBS program in Pakistan, especially for the homocystinuria having highest incidence among aminoacidopathies in the studied patients, and which is amenable to treatment. This endeavor will pave the way for a healthier life of affected patients and will lessen the burden on their families and society.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ and Allied Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Susanna M I Goorden
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frederic M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
37
|
Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis 2019; 42:686-705. [PMID: 30761552 DOI: 10.1002/jimd.12012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
This review gives an overview of clinical characteristics, treatment and outcome of nutritional and acquired cobalamin (Cbl; synonym: vitamin B12) deficiencies, inborn errors of Cbl absorption and intracellular trafficking, as well as methylenetetrahydrofolate dehydrogenase (MTHFD1) and methylene tetrahydrofolate reductase (MTHFR) deficiencies, which impair Cbl-dependent remethylation. Acquired and inborn Cbl-related disorders and MTHFR deficiency cause multisystem, often severe disease. Failure to thrive, neurocognitive or psychiatric symptoms, eye disease, bone marrow alterations, microangiopathy and thromboembolic events are characteristic. The recently identified MTHFD1 defect additionally presents with severe immune deficiency. Deficient Cbl-dependent enzymes cause reduced methylation capacity and metabolite toxicity. Further net-effects of perturbed Cbl function or reduced Cbl supply causing oxidative stress, altered cytokine regulation or immune functions are discussed.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|