1
|
Dong H, Ma X, Chen Z, Zhang H, Song J, Jin Y, Li M, Lu M, He R, Zhang Y, Yang Y. Clinical features and ALDH5A1 gene findings in 13 Chinese cases with succinic semialdehyde dehydrogenase deficiency. BMC Med Genomics 2024; 17:158. [PMID: 38862963 PMCID: PMC11165735 DOI: 10.1186/s12920-024-01925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND AIMS To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.
Collapse
Affiliation(s)
- Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhehui Chen
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Huiting Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ruxuan He
- Department of Respiratory Medicine, Beijing Children's Hospital, National Centre for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
2
|
Brown MN, Gibson KM, Schmidt MA, Walters DC, Arning E, Bottiglieri T, Roullet J. Cellular and molecular outcomes of glutamine supplementation in the brain of succinic semialdehyde dehydrogenase-deficient mice. JIMD Rep 2020; 56:58-69. [PMID: 33204597 PMCID: PMC7653255 DOI: 10.1002/jmd2.12151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with low levels of glutamine in the brain, suggesting that central glutamine deficiency contributes to pathogenesis. Recently, we attempted to rescue the disease phenotype of aldh5a1 -/- mice, a murine model of SSADHD with dietary glutamine supplementation. No clinical rescue and no central glutamine improvement were observed. Here, we report the results of follow-up studies of the cellular and molecular basis of the resistance of the brain to glutamine supplementation. We first determined if the expression of genes involved in glutamine metabolism was impacted by glutamine feeding. We then searched for changes of brain histology in response to glutamine supplementation, with a focus on astrocytes, known regulators of glutamine synthesis in the brain. Glutamine supplementation significantly modified the expression of glutaminase (gls) (0.6-fold down), glutamine synthetase (glul) (1.5-fold up), and glutamine transporters (solute carrier family 7, member 5 [slc7a5], 2.5-fold up; slc38a2, 0.6-fold down). The number of GLUL-labeled cells was greater in the glutamine-supplemented group than in controls (P < .05). Reactive astrogliosis, a hallmark of brain inflammation in SSADHD, was confirmed. We observed a 2-fold stronger astrocyte staining in mutants than in wild-type controls (optical density/cell were 1.8 ± 0.08 in aldh5a1 -/- and 0.99 ± 0.06 in aldh5a1 +/+ ; P < .0001), and a 3-fold higher expression of gfap and vimentin. However, glutamine supplementation did not improve the histological and molecular signature of astrogliosis. Thus, glutamine supplementation impacts genes implicated in central glutamine homeostasis without improving reactive astrogliosis. The mechanisms underlying glutamine deficiency and its contribution to SSADHD pathogenesis remain unknown and should be the focus of future investigations.
Collapse
Affiliation(s)
- Madalyn N. Brown
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical Sciences, Washington State UniversitySpokaneWashingtonUSA
| | - K. Michael Gibson
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical Sciences, Washington State UniversitySpokaneWashingtonUSA
| | - Michelle A. Schmidt
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical Sciences, Washington State UniversitySpokaneWashingtonUSA
| | - Dana C. Walters
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical Sciences, Washington State UniversitySpokaneWashingtonUSA
| | - Erland Arning
- Baylor Scott and White Research InstituteInstitute of Metabolic DiseaseDallasTexasUSA
| | - Teodoro Bottiglieri
- Baylor Scott and White Research InstituteInstitute of Metabolic DiseaseDallasTexasUSA
| | - Jean‐Baptiste Roullet
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical Sciences, Washington State UniversitySpokaneWashingtonUSA
| |
Collapse
|
3
|
Kirby T, Walters DC, Shi X, Turgeon C, Rinaldo P, Arning E, Ashcraft P, Bottiglieri T, DiBacco M, Pearl PL, Roullet JB, Gibson KM. Novel biomarkers and age-related metabolite correlations in plasma and dried blood spots from patients with succinic semialdehyde dehydrogenase deficiency. Orphanet J Rare Dis 2020; 15:261. [PMID: 32967698 PMCID: PMC7510106 DOI: 10.1186/s13023-020-01522-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous work has identified age-related negative correlations for γ-hydroxybutyric acid (GHB) and γ-aminobutyric acid (GABA) in plasma of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD). Using plasma and dried blood spots (DBS) collected in an ongoing natural history study, we tested the hypothesis that other biomarkers would follow a similar age-related negative correlation as seen for GHB/GABA. Samples (mixed sex) included: patients (n = 21 unique samples, 1-39.5 yrs) and parallel controls (n = 9 unique samples, 8.4-34.8 yrs). Archival control data (DBS only; n = 171, 0.5-39.9 yrs) was also included. RESULTS Metabolites assessed included amino acids (plasma, DBS) and acylcarnitines, creatine, creatinine, and guanidinoacetate (DBS only). Age-related negative correlations for glycine (plasma, DBS) and sarcosine (N-methylglycine, plasma) were detected, accompanied by elevated proline and decreased levels of succinylacetone, argininosuccinate, formaminoglutamate, and creatinine. Significantly low acylcarnitines were detected in patients across all chain lengths (short-, medium- and long-chain). Significant age-dependent positive correlations for selected acylcarnitines (C6-, C12DC(dicarboxylic)-, C16-, C16:1-, C18:1-, C18:2OH-carnitines) were detected in patients and absent in controls. Receiver operating characteristic (ROC) curves for all binary comparisons revealed argininosuccinate and succinylacetone to be the most discriminating biomarkers (area > 0.92). CONCLUSIONS Age-dependent acylcarnitine correlations may represent metabolic compensation responsive to age-related changes in GHB and GABA. Our study highlights novel biomarkers in SSADHD and expands the metabolic pathophysiology of this rare disorder of GABA metabolism.
Collapse
Affiliation(s)
- Trevor Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Dana C Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Xutong Shi
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Coleman Turgeon
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Piero Rinaldo
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Erland Arning
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Paula Ashcraft
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Melissa DiBacco
- Department of Neurology, Pediatric Neurology, Harvard Medical School and Boston Children's Hospital, Boston, USA
| | - Phillip L Pearl
- Department of Neurology, Pediatric Neurology, Harvard Medical School and Boston Children's Hospital, Boston, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA.
| |
Collapse
|
4
|
Brown M, Turgeon C, Rinaldo P, Roullet JB, Gibson KM. Temporal metabolomics in dried bloodspots suggests multipathway disruptions in aldh5a1 -/- mice, a model of succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab 2019; 128:397-408. [PMID: 31699650 DOI: 10.1016/j.ymgme.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/26/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency (SSADHD; OMIM 271980) is a rare disorder featuring accumulation of neuroactive 4-aminobutyric acid (GABA; γ-aminobutyric acid, derived from glutamic acid) and 4-hydroxybutyric acid (γ-hydroxybutyric acid; GHB, a short-chain fatty acid analogue of GABA). Elevated GABA is predicted to disrupt the GABA shunt linking GABA transamination to the Krebs cycle and maintaining the balance of excitatory:inhibitory neurotransmitters. Similarly, GHB (or a metabolite) is predicted to impact β-oxidation flux. We explored these possibilities employing temporal metabolomics of dried bloodspots (DBS), quantifying amino acids, acylcarnitines, and guanidino- metabolites, derived from aldh5a1+/+, aldh5a1+/- and aldh5a1-/- mice (aldehyde dehydrogenase 5a1 = SSADH) at day of life (DOL) 20 and 42 days. At DOL 20, aldh5a1-/- mice had elevated C6 dicarboxylic (adipic acid) and C14 carnitines and threonine, combined with a significantly elevated ratio of threonine/[aspartic acid + alanine], in comparison to aldh5a1+/+ mice. Conversely, at DOL 42 aldh5a1-/- mice manifested decreased short chain carnitines (C0-C6), valine and glutamine, in comparison to aldh5a1+/+ mice. Guanidino species, including creatinine, creatine and guanidinoacetic acid, evolved from normal levels (DOL 20) to significantly decreased values at DOL 42 in aldh5a1-/- as compared to aldh5a1+/+ mice. Our results provide a novel temporal snapshot of the evolving metabolic profile of aldh5a1-/- mice while highlighting new pathomechanisms in SSADHD.
Collapse
Affiliation(s)
- Madalyn Brown
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States of America
| | - Coleman Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States of America
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States of America.
| |
Collapse
|