1
|
Martino S, D’Addabbo P, Turchiano A, Radio FC, Bruselles A, Cordeddu V, Mancini C, Stella A, Laforgia N, Capodiferro D, Simonetti S, Bagnulo R, Palumbo O, Marzano F, Tabaku O, Garganese A, Stasi M, Tartaglia M, Pesole G, Resta N. Deep Intronic ETFDH Variants Represent a Recurrent Pathogenic Event in Multiple Acyl-CoA Dehydrogenase Deficiency. Int J Mol Sci 2024; 25:9637. [PMID: 39273584 PMCID: PMC11395610 DOI: 10.3390/ijms25179637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid and amino acid oxidation with an incidence of 1 in 200,000 live births. MADD has three clinical phenotypes: severe neonatal-onset with or without congenital anomalies, and a milder late-onset form. Clinical diagnosis is supported by urinary organic acid and blood acylcarnitine analysis using tandem mass spectrometry in newborn screening programs. MADD is an autosomal recessive trait caused by biallelic mutations in the ETFA, ETFB, and ETFDH genes encoding the alpha and beta subunits of the electron transfer flavoprotein (ETF) and ETF-coenzyme Q oxidoreductase enzymes. Despite significant advancements in sequencing techniques, many patients remain undiagnosed, impacting their access to clinical care and genetic counseling. In this report, we achieved a definitive molecular diagnosis in a newborn by combining whole-genome sequencing (WGS) with RNA sequencing (RNA-seq). Whole-exome sequencing and next-generation gene panels fail to detect variants, possibly affecting splicing, in deep intronic regions. Here, we report a unique deep intronic mutation in intron 1 of the ETFDH gene, c.35-959A>G, in a patient with early-onset lethal MADD, resulting in pseudo-exon inclusion. The identified variant is the third mutation reported in this region, highlighting ETFDH intron 1 vulnerability. It cannot be excluded that these intronic sequence features may be more common in other genes than is currently believed. This study highlights the importance of incorporating RNA analysis into genome-wide testing to reveal the functional consequences of intronic mutations.
Collapse
Affiliation(s)
- Stefania Martino
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Pietro D’Addabbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari “Aldo Moro”, Via Edoardo Orabona 4, 70125 Bari, Italy; (P.D.); (G.P.)
| | - Antonella Turchiano
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy; (F.C.R.); (C.M.); (M.T.)
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (V.C.)
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (V.C.)
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy; (F.C.R.); (C.M.); (M.T.)
| | - Alessandro Stella
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Nicola Laforgia
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.L.); (D.C.)
| | - Donatella Capodiferro
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.L.); (D.C.)
| | - Simonetta Simonetti
- Clinical Pathology and Neonatal Screening, Hospital “Giovanni XXIII”, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy;
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS—Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126 Bari, Italy;
| | - Ornella Tabaku
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Antonella Garganese
- Medical Genetic Unit, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy;
| | - Michele Stasi
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy; (F.C.R.); (C.M.); (M.T.)
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari “Aldo Moro”, Via Edoardo Orabona 4, 70125 Bari, Italy; (P.D.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126 Bari, Italy;
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.T.); (A.S.); (R.B.); (O.T.); (M.S.)
| |
Collapse
|
2
|
Herrero Martín JC, Salegi Ansa B, Álvarez-Rivera G, Domínguez-Zorita S, Rodríguez-Pombo P, Pérez B, Calvo E, Paradela A, Miguez DG, Cifuentes A, Cuezva JM, Formentini L. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab 2024; 6:209-225. [PMID: 38243131 PMCID: PMC10896730 DOI: 10.1038/s42255-023-00956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.
Collapse
Affiliation(s)
- Juan Cruz Herrero Martín
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Beñat Salegi Ansa
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Belén Pérez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David G Miguez
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Física de la Materia Condensada, IFIMAC, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
3
|
Bisschoff M, Smuts I, Dercksen M, Schoonen M, Vorster BC, van der Watt G, Spencer C, Naidu K, Henning F, Meldau S, McFarland R, Taylor RW, Patel K, Fassad MR, Vandrovcova J, Wanders RJA, van der Westhuizen FH. Clinical, biochemical, and genetic spectrum of MADD in a South African cohort: an ICGNMD study. Orphanet J Rare Dis 2024; 19:15. [PMID: 38221620 PMCID: PMC10789041 DOI: 10.1186/s13023-023-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.
Collapse
Affiliation(s)
- Michelle Bisschoff
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Marli Dercksen
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Maryke Schoonen
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Barend C Vorster
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - George van der Watt
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Careni Spencer
- Division of Human Genetics, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Kireshnee Naidu
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Krutik Patel
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Incorporating second-tier genetic screening for multiple acyl-CoA dehydrogenase deficiency. Clin Chim Acta 2022; 537:181-187. [DOI: 10.1016/j.cca.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
5
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
6
|
Mütze U, Mengler K, Boy N, Gleich F, Opladen T, Garbade SF, Kölker S. How longitudinal observational studies can guide screening strategy for rare diseases. J Inherit Metab Dis 2022; 45:889-901. [PMID: 35488475 DOI: 10.1002/jimd.12508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Newborn screening (NBS) is an important secondary prevention program, aiming to shift the paradigm of medicine to the pre-clinical stage of a disease. Starting more than 50 years ago, technical advances, such as tandem mass spectrometry (MS/MS), paved the way to a continuous extension of NBS programs. However, formal evidence of the long-term clinical benefits in large cohorts and cost-effectiveness of extended NBS programs is still scarce. Although published studies confirmed important benefits of NBS programs, it also unraveled a significant number of limitations. These include an incompletely understood natural history and phenotypic diversity of some screened diseases, unreliable early and precise prediction of individual disease severity, uncertainty about case definition, risk stratification, and indication to treat, resulting in a diagnostic and treatment dilemma in individuals with ambiguous screening and confirmatory test results. Interoperable patient registries are multi-purpose tools that could help to close the current knowledge gaps and to inform further optimization of NBS strategy. Standing at the edge of introducing high throughput genetic technologies to NBS programs with the opportunity to massively extend NBS programs and with the risk of aggravating current limitations of NBS programs, it seems overdue to include mandatory long-term follow-up of NBS cohorts into the list of screening principles and to build an international collaborative framework that enables data collection and exchange in a protected environment, integrating the perspectives of patients, families, and the society.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Veenvliet AR, Garrelfs MR, Udink ten Cate FE, Ferdinandusse S, Denis S, Fuchs SA, Schwantje M, Geurtzen R, van Wegberg AM, Huigen MC, Kluijtmans LA, Wanders RJ, Derks TG, de Boer L, Houtkooper RH, de Vries MC, van Karnebeek CD. Neonatal Long-Chain 3-Ketoacyl-CoA Thiolase deficiency: Clinical-biochemical phenotype, sodium-D,L-3-hydroxybutyrate treatment experience and cardiac evaluation using speckle echocardiography. Mol Genet Metab Rep 2022; 31:100873. [PMID: 35782614 PMCID: PMC9248206 DOI: 10.1016/j.ymgmr.2022.100873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 02/08/2023] Open
Abstract
Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.
Collapse
|
8
|
Lin Y, Zhang W, Chen Z, Lin C, Lin W, Fu Q, Peng W, Chen D. Newborn screening and molecular features of patients with multiple acyl-CoA dehydrogenase deficiency in Quanzhou, China. J Pediatr Endocrinol Metab 2021; 34:649-652. [PMID: 33823107 DOI: 10.1515/jpem-2020-0694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid and choline metabolism. Late-onset MADD is caused by ETFDH mutations and is the most common lipid storage myopathy in China. However, few patients with MADD have been identified through newborn screening (NBS). This study assessed the acylcarnitine profiles and molecular features of patients with MADD identified through NBS. METHODS From January 2014 to June 2020, 479,786 newborns screened via tandem mass spectrometry were recruited for this study. Newborns with elevated levels of multiple acylcarnitines were recalled, those who tested positive in the reassessment were referred for genetic analysis. RESULTS Of 479,786 newborns screened, six were diagnosed with MADD. The MADD incidence in the Chinese population was estimated to be 1:79,964. Initial NBS revealed five patients with typical elevations in the levels of multiple acylcarnitines; however, in one patient, acylcarnitine levels were in the normal reference range during recall. Notably, one patient only exhibited a mildly increased isovalerylcarnitine (C5) level at NBS. The patient with an atypical acylcarnitine profile was diagnosed with MADD by targeted gene sequencing. Six distinct ETFDH missense variants were identified, with the most common variant being c.250G>A (p.A84T), with an allelic frequency of 58.35 (7/12). CONCLUSIONS These findings revealed that it is easy for patients with MADD to go unidentified, as they may have atypical acylcarnitine profiles at NBS and the recall stage, indicating the value of genetic analysis for confirming suspected inherited metabolic disorders in the NBS program. Therefore, false-negative (FN) results may be reduced by combining tandem mass spectrometry (MS/MS) with genetic testing in NBS for MADD.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Weifeng Zhang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Zhixu Chen
- Department of Pediatric Intensive Care Unit, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Weilin Peng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| |
Collapse
|
9
|
Role of RNA in Molecular Diagnosis of MADD Patients. Biomedicines 2021; 9:biomedicines9050507. [PMID: 34064479 PMCID: PMC8147995 DOI: 10.3390/biomedicines9050507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) encodes the ETF-ubiquinone oxidoreductase (ETF-QO) and has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). In this study, we present the clinical and molecular diagnostic challenges, at the DNA and RNA levels, involved in establishing the genotype of four MADD patients with novel ETFDH variants: a missense variant, two deep intronic variants and a gross deletion. RNA sequencing allowed the identification of the second causative allele in all studied patients. Simultaneous DNA and RNA investigation can increase the number of MADD patients that can be confirmed following the suggestive data results of an expanded newborn screening program. In clinical practice, accurate identification of pathogenic mutations is fundamental, particularly with regard to diagnostic, prognostic, therapeutic and ethical issues. Our study highlights the importance of RNA studies for a definitive molecular diagnosis of MADD patients, expands the background of ETFDH mutations and will be important in providing an accurate genetic counseling and a prenatal diagnosis for the affected families.
Collapse
|
10
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
11
|
Elkhateeb N, Chakrapani A, Davison J, Grunewald S, Batzios S. Pancreatitis in multiple acyl CoA dehydrogenase deficiency: An underdiagnosed complication. JIMD Rep 2021; 57:15-22. [PMID: 33473335 PMCID: PMC7802625 DOI: 10.1002/jmd2.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase (MADD) deficiency represents a rare fatty acid oxidation disorder where sporadic reports of pancreatitis already exist. Here, we report three cases of MADD with pancreatic involvement raising questions whether this represents an incidental finding or it is related to the pathophysiology of MADD. METHODS We have retrospectively studied the clinical, biochemical and radiologic data of patients with MADD diagnosed in our department over the last 20 years to identify patients with pancreatic involvement. RESULTS Three out of 17 patients had pancreatic involvement. All three patients were diagnosed with MADD in the neonatal period (two-third symptomatic-riboflavin nonresponsive, one-third asymptomatic via newborn screening-riboflavin responsive). Age at presentation of pancreatitis ranged from 20 months to 11 years. Presentations included a single episode of acute pancreatitis in the first patient, chronic necrotizing pancreatitis in the second patient, while the third patient was diagnosed with chronic pancreatitis (CP) incidentally through ultrasonography. All patients had inflammation features on either abdominal computed tomography or ultrasound. Pancreatic enzymes were elevated in two patients. Management of pancreatitis was done conservatively while the patient with necrotic CP required subtotal pancreatectomy. DISCUSSION Our data suggest that pancreatitis might be more common in patients with MADD than previously reported, requiring a high index of suspicion in patients with acute metabolic decompensation or nonspecific abdominal symptoms. We hypothesize that the underlying mechanism of pancreatitis in MADD is similar to that in mitochondrial disorders, both resulting from disordered energy metabolism and oxidative phosphorylation.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Anupam Chakrapani
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - James Davison
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Stephanie Grunewald
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| | - Spyros Batzios
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital NHS TrustLondonUK
| |
Collapse
|
12
|
Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscler 2020; 9:313-333. [PMID: 33024728 PMCID: PMC7521971 DOI: 10.12997/jla.2020.9.3.313] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial fatty acid (FA) oxidation deficiencies represent a genetically heterogeneous group of diseases in humans caused by defects in mitochondrial FA beta-oxidation (mFAO). A general characteristic of all mFAO disorders is hypoketotic hypoglycemia resulting from the enhanced reliance on glucose oxidation and the inability to synthesize ketone bodies from FAs. Patients with a defect in the oxidation of long-chain FAs are at risk to develop cardiac and skeletal muscle abnormalities including cardiomyopathy and arrhythmias, which may progress into early death, as well as rhabdomyolysis and exercise intolerance. The diagnosis of mFAO-deficient patients has greatly been helped by revolutionary developments in the field of tandem mass spectrometry (MS) for the analysis of acylcarnitines in blood and/or urine of candidate patients. Indeed, acylcarnitines have turned out to be excellent biomarkers; not only do they provide information whether a certain patient is affected by a mFAO deficiency, but the acylcarnitine profile itself usually immediately points to which enzyme is likely deficient. Another important aspect of acylcarnitine analysis by tandem MS is that this technique allows high-throughput analysis, which explains why screening for mFAO deficiencies has now been introduced in many newborn screening programs worldwide. In this review, we will describe the current state of knowledge about mFAO deficiencies, with particular emphasis on recent developments in the area of pathophysiology and treatment.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
14
|
van Rijt WJ, Jager EA, Allersma DP, Aktuğlu Zeybek AÇ, Bhattacharya K, Debray FG, Ellaway CJ, Gautschi M, Geraghty MT, Gil-Ortega D, Larson AA, Moore F, Morava E, Morris AA, Oishi K, Schiff M, Scholl-Bürgi S, Tchan MC, Vockley J, Witters P, Wortmann SB, van Spronsen F, Van Hove JLK, Derks TGJ. Efficacy and safety of D,L-3-hydroxybutyrate (D,L-3-HB) treatment in multiple acyl-CoA dehydrogenase deficiency. Genet Med 2020; 22:908-916. [PMID: 31904027 PMCID: PMC7200590 DOI: 10.1038/s41436-019-0739-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.
Collapse
Affiliation(s)
- Willemijn J van Rijt
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Emmalie A Jager
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Derk P Allersma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A Çiğdem Aktuğlu Zeybek
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia
| | | | - Carolyn J Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Matthias Gautschi
- University Hospital Bern, Department of Pediatric Endocrinology, Diabetology and Metabolism and University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Michael T Geraghty
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David Gil-Ortega
- Department of Pediatric Gastroenterology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Austin A Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Francesca Moore
- Biochemical Genetics Laboratory, The Children's Hospital at Westmead, Sydney, Australia
| | - Eva Morava
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | - Andrew A Morris
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Schiff
- Reference Centre for Inborn Errors of Metabolism, Robert Debré Univ. Hospital, APHP, INSERM U1141 and Paris Diderot University, Paris, France
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Michel C Tchan
- Westmead Hospital, University of Sydney, Sydney, Australia
| | - Jerry Vockley
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Peter Witters
- Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | - Saskia B Wortmann
- University Childrens Hospital, Paracelcus Medical University (PMU), Salzburg, Austria
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Francjan van Spronsen
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Terry G J Derks
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.
| |
Collapse
|
15
|
Welsink-Karssies MM, van Weeghel M, Hollak CEM, Elfrink HL, Janssen MCH, Lai K, Langendonk JG, Oussoren E, Ruiter JPN, Treacy EP, de Vries M, Ferdinandusse S, Bosch AM. The Galactose Index measured in fibroblasts of GALT deficient patients distinguishes variant patients detected by newborn screening from patients with classical phenotypes. Mol Genet Metab 2020; 129:171-176. [PMID: 31954591 DOI: 10.1016/j.ymgme.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The high variability in clinical outcome of patients with Classical Galactosemia (CG) is poorly understood and underlines the importance of prognostic biomarkers, which are currently lacking. The aim of this study was to investigate if residual galactose metabolism capacity is associated with clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. METHODS Galactose Metabolite Profiling (GMP) was used to determine residual galactose metabolism in fibroblasts of CG patients. The association between the galactose index (GI) defined as the ratio of the measured metabolites [U13C]Gal-1-P/ [13C6]UDP-galactose, and both intellectual and neurological outcome and galactose-1-phosphate (Gal-1-P) levels was investigated. RESULTS GMP was performed in fibroblasts of 28 patients and 3 control subjects. The GI of the classical phenotype patients (n = 22) was significantly higher than the GI of four variant patients detected by newborn screening (NBS) (p = .002), two homozygous p.Ser135Leu patients (p = .022) and three controls (p = .006). In the classical phenotype patients, 13/18 (72%) had a poor intellectual outcome (IQ < 85) and 6/12 (50%) had a movement disorder. All the NBS detected variant patients (n = 4) had a normal intellectual outcome (IQ ≥ 85) and none of them has a movement disorder. In the classical phenotype patients, there was no significant difference in GI between patients with a poor and normal clinical outcome. The NBS detected variant patients had significantly lower GI levels and thus higher residual galactose metabolism than patients with classical phenotypes. There was a clear correlation between Gal-1-P levels in erythrocytes and the GI (p = .001). CONCLUSIONS The GI was able to distinguish CG patients with varying geno- and phenotypes and correlated with Gal-1-P. The data of the NBS detected variant patients demonstrated that a higher residual galactose metabolism may result in a more favourable clinical outcome. Further research is needed to enable individual prognostication and treatment in all CG patients.
Collapse
Affiliation(s)
- Mendy M Welsink-Karssies
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyung L Elfrink
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kent Lai
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, United States
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jos P N Ruiter
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eileen P Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital Dublin, Ireland
| | - Maaike de Vries
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|