1
|
Mütze U, Scharré S, Schnabel-Besson E, Kuseyri Hübschmann O, Höster F, Tuncel AT, Kölker S, Opladen T. Newborn screening for neuro-metabolic disorders: Strategies, clinical benefits, and prerequisites for program expansion. Eur J Paediatr Neurol 2025; 56:84-96. [PMID: 40339400 DOI: 10.1016/j.ejpn.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
Newborn screening (NBS) is a successful program of secondary prevention for rare diseases, such as neuro-metabolic diseases, enabling early identification of affected individuals and pre-symptomatic treatment. Driven by innovations in high-throughput sequencing technologies, NBS panels have continued to grow and will probably be extended further in the future. However, implementing NBS for a disease is subject to various preconditions to maximize the benefit for the affected children, while avoiding harm to the screened healthy cohort, their families and the society. Ideally, data on clinical long-term benefit of NBS and early treatment is collected prior to NBS implementation through long-term observational studies and registries. In addition, NBS should be implemented as an iteratively evaluated public health program and the data collection should be accompanied by intra-operable long-term observational studies, ideally extended in international cooperations. In this review, the current expertise in NBS, the screening strategies and possible long-term clinical benefits are presented and discussed for several neuro-metabolic diseases, including propionic acidemia and isolated methylmalonic acidemias, homocystinurias, remethylation defects, acquired cobalamin (vitamin B12) deficiency, urea cycle disorders, tetrahydrobiopterin (BH4) and primary neurotransmitter disorders, as well as lysosomal storage disorders. Given these prerequisites, several of the neuro-metabolic diseases discussed here might be part of future NBS programs worldwide.
Collapse
Affiliation(s)
- Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Svenja Scharré
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Elena Schnabel-Besson
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Friederike Höster
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ali Tunҫ Tuncel
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Heidelberg University, Medical Faculty of Heidelberg, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Pokrzywinski R, Bartke D, Clucas C, Machuzak K, Pinto L. "My dream is to not have to be on a diet": a qualitative study on burdens of classical homocystinuria (HCU) from the patient perspective. Orphanet J Rare Dis 2025; 20:106. [PMID: 40045343 PMCID: PMC11884047 DOI: 10.1186/s13023-025-03576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Patients with classical homocystinuria (HCU) are unable to metabolize homocysteine and rely on dietary treatment to reduce their risk of complications (e.g., thromboembolism, cognitive impairment). Little is known about how patients are affected by their HCU disease experience. METHODS One-on-one, semi-structured interviews were conducted in adult and pediatric patients (aged ≥ 12 years) with HCU and in primary caregivers on behalf of pediatric patients aged 5-17 years. Interviews elicited patients' experiences with signs, symptoms, and impacts of HCU. Participants listed their most-bothersome signs/symptoms and impacts and were asked about what changes in HCU treatment would improve their everyday lives. RESULTS Eleven adult patients, two pediatric patients, and seven caregivers (of non-participating patients) participated. Many were most bothered by cognition-related symptoms (n = 7, 35%) and fatigue (n = 6, 30%). Nearly all participants (n = 19, 95%) struggled with the "very restricted [low-protein] diet" and the "disgusting" and inconvenient medical formula. The dietary restrictions and requirements often led to challenges fitting in socially. Psychological impacts of HCU (e.g., anxiety, depression) were highly prevalent (n = 16, 80%) and bothersome (n = 9, 45%). Many patients experienced financial burdens related to their dietary treatment (n = 14, 70%). Most participants wanted a treatment involving less formula or a more relaxed diet (n = 12, 60%) and felt that these changes would meaningfully improve their everyday lives. CONCLUSIONS Most patients were burdened by adhering to dietary treatment and by symptoms that worsened when they did not adhere to treatment. These findings can be used to inform treatment goals and care to improve patients' everyday lives.
Collapse
|
3
|
Mureau N, Chapart F, Perivier M, Benz-de Bretagne I, Tardieu M, Labarthe F, Khanna RK, Blasco H. Homocystinuria in a 14-year-old girl with neurodevelopmental delay. J Fr Ophtalmol 2025; 48:104386. [PMID: 39674690 DOI: 10.1016/j.jfo.2024.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 12/16/2024]
Affiliation(s)
- N Mureau
- Department of Biochemistry, Bretonneau University Hospital, Tours, France.
| | - F Chapart
- Department of Paediatric Neurology, Gatien-de-Clocheville University Hospital, Tours, France
| | - M Perivier
- Department of Paediatric Neurology, Gatien-de-Clocheville University Hospital, Tours, France
| | - I Benz-de Bretagne
- Department of Biochemistry, Bretonneau University Hospital, Tours, France; Université de Tours, Inserm, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032 Tours, France
| | - M Tardieu
- Centre de Référence des Maladies Héréditaires du Métabolisme ToTeM, Service de Médecine Pédiatrique, Hôpital Clocheville, Tours, France
| | - F Labarthe
- Centre de Référence des Maladies Héréditaires du Métabolisme ToTeM, Service de Médecine Pédiatrique, Hôpital Clocheville, Tours, France; Inserm UMR1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François-Rabelais de Tours, 10, boulevard Tonnellé, 37000 Tours, France
| | - R K Khanna
- Department of Ophthalmology, Bretonneau University Hospital, Tours, France; Université de Tours, Inserm, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032 Tours, France
| | - H Blasco
- Department of Biochemistry, Bretonneau University Hospital, Tours, France; Université de Tours, Inserm, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032 Tours, France
| |
Collapse
|
4
|
Morris AAM, Sokolová J, Pavlíková M, Gleich F, Kölker S, Dionisi‐Vici C, Baumgartner MR, Hannibal L, Blom HJ, Huemer M, Kožich V. Cystathionine β-Synthase Deficiency in the E-HOD Registry-Part II: Dietary and Pharmacological Treatment. J Inherit Metab Dis 2025; 48:e12844. [PMID: 40095936 PMCID: PMC11729643 DOI: 10.1002/jimd.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 03/19/2025]
Abstract
Cystathionine β-synthase (CBS) deficiency (classical homocystinuria) has a wide range of severity. Mildly affected patients typically present as adults with thromboembolism and respond to treatment with pyridoxine. Severely affected patients usually present during childhood with learning difficulties, ectopia lentis and skeletal abnormalities; they are pyridoxine non-responders (NR) or partial responders (PR) and require treatment with a low-methionine diet and/or betaine. The European network and registry for Homocystinurias and methylation Defects (E-HOD) has published management guidelines for CBS deficiency and recommended keeping plasma total homocysteine (tHcy) concentrations below 100 μmol/L. We have now analysed data from 311 patients in the registry to see how closely treatment follows the guidelines. Pyridoxine-responsive patients generally achieved tHcy concentrations below 50 μmol/L, but many NRs and PRs had a mean tHcy considerably above 100 μmol/L. Most NRs were managed with betaine and a special diet. This usually involved severe protein restriction and a methionine-free amino acid mixture, but some patients had a natural protein intake substantially above the WHO safe minimum. Work is needed on the methionine content of dietary protein as estimates vary widely. Contrary to the guidelines, most NRs were on pyridoxine, sometimes at dangerously high doses. tHcy concentrations were similar in groups prescribed high or low betaine doses and natural protein intakes. High tHcy levels were probably often due to poor compliance. Comparing time-to-event graphs for NR patients detected by newborn screening and those ascertained clinically showed that treatment could prevent thromboembolism (risk ratio 0.073) and lens dislocation (risk ratio 0.069).
Collapse
Affiliation(s)
- Andrew A. M. Morris
- Manchester Centre for Genomic MedicineManchester University Hospitals NHS TrustManchesterUK
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzechia
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University‐Faculty of Mathematics and PhysicsPragueCzechia
| | - Florian Gleich
- Centre for Pediatric and Adolescent Medicine, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic MedicineMedical Faculty of Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Stefan Kölker
- Centre for Pediatric and Adolescent Medicine, Department of Pediatrics I, Division of Pediatric Neurology and Metabolic MedicineMedical Faculty of Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Carlo Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Research HospitalRomeItaly
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Center for General Pediatrics and Adolescent Medicine, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Henk J. Blom
- Department of Clinical GeneticsCenter for Lysosomal and Metabolic Diseases, Erasmus Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Department of PediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzechia
| | | |
Collapse
|
5
|
Philipp TM, Bottiglieri T, Clapper W, Liu K, Rodems S, Szabo C, Majtan T. Mechanism of action and impact of thiol homeostasis on efficacy of an enzyme replacement therapy for classical homocystinuria. Redox Biol 2024; 77:103383. [PMID: 39366068 PMCID: PMC11489331 DOI: 10.1016/j.redox.2024.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is characterized by elevated plasma and tissue homocysteine levels. There is no cure, but HCU is typically managed by methionine/protein restriction and vitamin B6 supplementation. Enzyme replacement therapy (ERT) based on human CBS has been developed and has shown significant efficacy correcting HCU phenotype in several mouse models by bringing plasma total homocysteine below the clinically relevant 100 μM threshold. As the reactive nature of homocysteine promotes disulfide formation and protein binding, and ERT is unable to normalize plasma total homocysteine levels, the mechanism of action of ERT in HCU remains to be further characterized. Here we showed that only a reduced homocysteine serves as a substrate for CBS and its availability restricts the homocysteine-degrading capacity of CBS. We also demonstrated that cells export homocysteine in its reduced form, which is efficiently metabolized by CBS in the culture medium. Availability of serine, a CBS co-substrate, was not a limiting factor in our cell-based model. Biological reductants, such as N-acetylcysteine, MESNA or cysteamine, increased the availability of the reduced homocysteine and thus promoted its subsequent CBS-based elimination. In a transgenic I278T mouse model of HCU, administration of biological reductants significantly increased the proportion of protein-unbound homocysteine in plasma, which improved the efficacy of the co-administered CBS-based ERT, as evidenced by significantly lower plasma total homocysteine levels. These results clarify the mechanism of action of CBS-based ERT and unveil novel pharmacological approaches to further increase its efficacy.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | | | - Kai Liu
- Travere Therapeutics, Inc., San Diego, CA, 92130, USA
| | - Steve Rodems
- Travere Therapeutics, Inc., San Diego, CA, 92130, USA
| | - Csaba Szabo
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland.
| |
Collapse
|
6
|
Kožich V, Majtan T. Komrower Memorial Lecture 2023. Molecular basis of phenotype expression in homocystinuria: Where are we 30 years later? J Inherit Metab Dis 2024; 47:841-859. [PMID: 38873792 DOI: 10.1002/jimd.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
This review summarises progress in the research of homocystinuria (HCU) in the past three decades. HCU due to cystathionine β-synthase (CBS) was discovered in 1962, and Prof. Jan Peter Kraus summarised developments in the field in the first-ever Komrower lecture in 1993. In the past three decades, significant advancements have been achieved in the biology of CBS, including gene organisation, tissue expression, 3D structures, and regulatory mechanisms. Renewed interest in CBS arose in the late 1990s when this enzyme was implicated in biogenesis of H2S. Advancements in genetic and biochemical techniques enabled the identification of several hundreds of pathogenic CBS variants and the misfolding of missense mutations as a common mechanism. Several cellular, invertebrate and murine HCU models allowed us to gain insights into functional and metabolic pathophysiology of the disease. Establishing the E-HOD consortium and patient networks, HCU Network Australia and HCU Network America, offered new possibilities for acquiring clinical data in registries and data on patients' quality of life. A recent analysis of data from the E-HOD registry showed that the clinical variability of HCU is broad, extending from severe childhood disease to milder (late) adulthood forms, which typically respond to pyridoxine. Pyridoxine responsiveness appears to be the key factor determining the clinical course of HCU. Increased awareness about HCU played a role in developing novel therapies, such as gene therapy, correction of misfolding by chaperones, removal of methionine from the gut and enzyme therapies that decrease homocysteine or methionine in the circulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Reischl-Hajiabadi AT, Schnabel E, Gleich F, Mengler K, Lindner M, Burgard P, Posset R, Lommer-Steinhoff S, Grünert SC, Thimm E, Freisinger P, Hennermann JB, Krämer J, Gramer G, Lenz D, Christ S, Hörster F, Hoffmann GF, Garbade SF, Kölker S, Mütze U. Outcomes after newborn screening for propionic and methylmalonic acidemia and homocystinurias. J Inherit Metab Dis 2024; 47:674-689. [PMID: 38563533 DOI: 10.1002/jimd.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine β-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-β-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.
Collapse
Affiliation(s)
- Anna T Reischl-Hajiabadi
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Elena Schnabel
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Katharina Mengler
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Peter Burgard
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Svenja Lommer-Steinhoff
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany
| | - Gwendolyn Gramer
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
- Department for Inborn Metabolic Diseases, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stine Christ
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Friederike Hörster
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
9
|
Majtan T, Olsen T, Sokolova J, Krijt J, Křížková M, Ida T, Ditrói T, Hansikova H, Vit O, Petrak J, Kuchař L, Kruger WD, Nagy P, Akaike T, Kožich V. Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function. Redox Biol 2024; 73:103222. [PMID: 38843767 PMCID: PMC11190558 DOI: 10.1016/j.redox.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jitka Sokolova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Ladislav Kuchař
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Viktor Kožich
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic.
| |
Collapse
|
10
|
Al-Sadeq DW, Thanassoulas A, Theodoridou M, Nasrallah GK, Nomikos M. Pathogenic Homocystinuria-Associated T236N Mutation Dramatically Alters the Biochemical Properties of Cystathionine Beta-Synthase Protein. Biomedicines 2024; 12:929. [PMID: 38790892 PMCID: PMC11118236 DOI: 10.3390/biomedicines12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cystathione beta-synthase (CBS) T236N is a novel mutation associated with pyridoxine non-responsiveness, which presents a significant difficulty in the medical treatment of homocystinuria. Reported severe phenotypes in homocystinuria patients highlight the urgent requirement to comprehend the molecular mechanisms underlying mutation pathogenicity for the advancement of the disease. METHODOLOGY In this study, we used a multidisciplinary approach to investigate the molecular properties of bacterially expressed and purified recombinant CBST236N protein, which we directly compared to those of the wild-type (CBSWT) protein. RESULTS Our data revealed a profound impact of the p.T236N mutation on CBS enzymatic activity, with a dramatic reduction of ~96% compared to the CBSWT protein. Circular dichroism (CD) experiments indicated that the p.T236N mutation did not significantly alter the secondary structure of the protein. However, CD spectra unveiled distinct differences in the thermal stability of CBSWT and CBST236N mutant protein species. In addition, chemical denaturation experiments further highlighted that the CBSWT protein exhibited greater thermodynamic stability than the CBST236N mutant, suggesting a destabilizing effect of this mutation. CONCLUSIONS Our findings provide an explanation of the pathogenicity of the p.T236N mutation, shedding light on its role in severe homocystinuria phenotypes. This study contributes to a deeper understanding of CBS deficiency and may improve the development of targeted therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | | | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
11
|
Perreault M, Means J, Gerson E, James M, Cotton S, Bergeron CG, Simon M, Carlin DA, Schmidt N, Moore TC, Blasbalg J, Sondheimer N, Ndugga-Kabuye K, Denney WS, Isabella VM, Lubkowicz D, Brennan A, Hava DL. The live biotherapeutic SYNB1353 decreases plasma methionine via directed degradation in animal models and healthy volunteers. Cell Host Microbe 2024; 32:382-395.e10. [PMID: 38309259 DOI: 10.1016/j.chom.2024.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine β-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.
Collapse
|
12
|
Collard R, Majtan T. Genetic and Pharmacological Modulation of Cellular Proteostasis Leads to Partial Functional Rescue of Homocystinuria-Causing Cystathionine-Beta Synthase Variants. Mol Cell Biol 2023; 43:664-674. [PMID: 38051092 PMCID: PMC10761163 DOI: 10.1080/10985549.2023.2284147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.
Collapse
Affiliation(s)
- Renata Collard
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| |
Collapse
|
13
|
Ziegler SG, Kim J, Ehmsen JT, Vernon HJ. Inborn errors of amino acid metabolism - from underlying pathophysiology to therapeutic advances. Dis Model Mech 2023; 16:dmm050233. [PMID: 37994477 PMCID: PMC10690057 DOI: 10.1242/dmm.050233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Amino acids are organic molecules that serve as basic substrates for protein synthesis and have additional key roles in a diverse array of cellular functions, including cell signaling, gene expression, energy production and molecular biosynthesis. Genetic defects in the synthesis, catabolism or transport of amino acids underlie a diverse class of diseases known as inborn errors of amino acid metabolism. Individually, these disorders are rare, but collectively, they represent an important group of potentially treatable disorders. In this Clinical Puzzle, we discuss the pathophysiology, clinical features and management of three disorders that showcase the diverse clinical presentations of disorders of amino acid metabolism: phenylketonuria, lysinuric protein intolerance and homocystinuria due to cystathionine β-synthase (CBS) deficiency. Understanding the biochemical perturbations caused by defects in amino acid metabolism will contribute to ongoing development of diagnostic and management strategies aimed at improving the morbidity and mortality associated with this diverse group of disorders.
Collapse
Affiliation(s)
- Shira G. Ziegler
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey T. Ehmsen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hilary J. Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
15
|
Uygur E, Aktuglu-Zeybek C, Aghalarov M, Cansever MS, Kıykım E, Zubarioglu T. A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency. Nutrients 2023; 15:3105. [PMID: 37513523 PMCID: PMC10384669 DOI: 10.3390/nu15143105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The main treatment for pyridoxine-nonresponsive cystathionine-β-synthase deficiency is a strict diet. Most centers prescribe low-protein diets based on gram-protein exchanges, and all protein sources are weighed. The purpose of this study is to investigate the effects of a more liberal methionine (Met)-based diet with relaxed consumption of fruits and vegetables on metabolic outcomes and dietary adherence. Ten patients previously on a low-protein diet based on a gram-protein exchange list were enrolled. The natural protein exchange lists were switched to a "Met portion exchange list". Foods containing less than 0.005 g methionine per 100 g of the food were accepted as exchange-free foods. The switch to Met portioning had no adverse effects on the control of plasma homocysteine levels in terms of metabolic outcomes. It resulted in a significant reduction in patients' daily betaine dose. All patients preferred to continue with this modality. In conclusion, methionine-portion-based medical nutrition therapy with relaxed consumption of fruits and vegetables seems to be a good and safe option to achieve good metabolic outcomes and high treatment adherence.
Collapse
Affiliation(s)
- Esma Uygur
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
- Nutrition and Dietetics PhD Programme, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey
| | - Cigdem Aktuglu-Zeybek
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Mirsaid Aghalarov
- Department of Pediatrics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Mehmet Serif Cansever
- Division of Medical Laboratory Techniques, Department of Medical Documentation and Techniques, The Vocational School of Health Services, Istanbul University-Cerrahpasa, 34295 Istanbul, Turkey
| | - Ertugrul Kıykım
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Tanyel Zubarioglu
- Department of Pediatric Nutrition and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| |
Collapse
|
16
|
Gupta S, Lee HO, Wang L, Kruger WD. Examination of two different proteasome inhibitors in reactivating mutant human cystathionine β-synthase in mice. PLoS One 2023; 18:e0286550. [PMID: 37319242 PMCID: PMC10270616 DOI: 10.1371/journal.pone.0286550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Classic homocystinuria is an inborn error of metabolism caused mainly by missense mutations leading to misfolded and/or unstable human cystathionine β-synthase (CBS) protein, causing the accumulation of excess total homocysteine (tHcy) in tissues. Previously, it has been shown that certain missense containing human CBS proteins can be functionally rescued in mouse models of CBS deficiency by treatment with proteasome inhibitors. The rescue by proteasome inhibitors is thought to work both by inhibiting the degradation of misfolded CBS protein and by inducing the levels of heat-shock chaperone proteins in the liver. Here we examine the effectiveness of two FDA approved protease inhibitors, carfilzomib and bortezomib, on various transgenic mouse models of human CBS deficiency. Our results show that although both drugs are effective in inducing the liver chaperone proteins Hsp70 and Hsp27, and are effective in inhibiting proteasome function, bortezomib was somewhat more robust in restoring the mutant CBS function. Moreover, there was no significant correlation between proteasome inhibition and CBS activity, suggesting that some of bortezomib's effects are via other mechanisms. We also test the use of low-doses of bortezomib and carfilzomib on various mouse models for extended periods of time and find that while low-doses are less toxic, they are also less effective at restoring CBS function. Overall, these results show that while restoration of mutant CBS function is possible with proteasome inhibitors, the exact mechanism is complicated and it will likely be too toxic for long-term patient treatment.
Collapse
Affiliation(s)
- Sapna Gupta
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Hyung-Ok Lee
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Liqun Wang
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Warren D. Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Elkhateeb N, Hyde S, Hogg SL, Allsop D, Shankar A, Deegan P, Tan CY. Paracetamol toxicity in classic homocystinuria: Effect of N-acetylcysteine on total homocysteine. JIMD Rep 2023; 64:238-245. [PMID: 37151359 PMCID: PMC10159864 DOI: 10.1002/jmd2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Classical homocystinuria (HCU) is caused by cystathionine β-synthase deficiency leading to impaired homocysteine transsulfuration and accumulation of homocysteine and methionine. Patients present with a wide spectrum of manifestations including ocular, skeletal, neuropsychiatric, and vascular manifestations. We report a 48-year-old female with pyridoxine-unresponsive HCU treated with betaine, cyanocobalamin, and folate. Her diet was non-restricted due to intolerance of low-methionine diet. She was admitted to hospital following a fall, with multiple fractures and subsequently developed acute liver failure with encephalopathy. Shock, sepsis, and liver ischaemia/thrombosis were excluded. In the context of glutathione depletion expected in HCU, hepatic dysfunction was presumed to be due to iatrogenic paracetamol toxicity, despite paracetamol intake at conventional therapeutic dose, with role of hypermethioninemia as a contributing factor being uncertain. Betaine was discontinued on hospital admission. N-Acetylcysteine (NAC) infusion was initiated. Plasma total homocysteine (tHcy) was 3.4 μmol/L 9 days following initiation of NAC treatment with a markedly elevated plasma methionine of 1278 μmol/L. tHcy concentration returned to pre-admission baseline after NAC was discontinued. Recovery following this episode was slow with a prolonged cholestatic phase and gradual improvement in jaundice and coagulopathy. We recommend that paracetamol should be administered cautiously in HCU patients due to underlying glutathione depletion and risk of toxicity even at therapeutic doses. NAC is clearly effective in lowering tHcy in classical HCU in the short-term however further research is required to assess clinical efficacy and use as a potential therapy in classical HCU.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Metabolic MedicineCambridge University hospitals NHS Foundation TrustCambridgeUK
- Department of Clinical GeneticsCambridge University hospitals NHS Foundation TrustCambridgeUK
| | - Sarah Hyde
- Department of GastroenterologyNorfolk and Norwich University Hospital NHS TrustNorwichUK
| | - Sarah L. Hogg
- Biochemical Genetics UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Daniel Allsop
- Department of HistopathologyNorfolk and Norwich University Hospitals NHS TrustNorwichUK
| | - Arun Shankar
- Department of GastroenterologyNorfolk and Norwich University Hospital NHS TrustNorwichUK
| | - Patrick Deegan
- Department of Metabolic MedicineCambridge University hospitals NHS Foundation TrustCambridgeUK
| | - Chong Y. Tan
- Department of Metabolic MedicineCambridge University hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
18
|
Candela E, Zagariello M, Di Natale V, Ortolano R, Righetti F, Assirelli V, Biasucci G, Cassio A, Pession A, Baronio F. Cystathionine Beta-Synthase Deficiency: Three Consecutive Cases Detected in 40 Days by Newborn Screening in Emilia Romagna (Italy) and a Comprehensive Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020396. [PMID: 36832525 PMCID: PMC9955056 DOI: 10.3390/children10020396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Cysthiatonine beta-synthase (CBS) deficiency (CBSD) is an autosomal recessive rare disorder caused by variations on CBS that leads to impaired conversion of homocysteine (Hcy) to cystathionine. Marked hyperhomocysteinemia is the hallmark of the disease. The administration of pyridoxine, the natural cofactor of CBS, may reduce total plasma Hcy. Patient phenotype is classified on pyridoxine responsivity in two groups: pyridoxine-responsive and non-responsive patients. Ectopia lentis, bone deformities, developmental delay, and thromboembolism are the classic signs and symptoms of the disease. Early diagnosis and treatment impact patients' natural history. Therapy aims to lower promptly and maintain Hcy concentrations below 100 μmol/L. Depending on the patient's phenotype, the treatment goals could be obtained by the administration of pyridoxine and/or betaine associated with a methionine-restricted diet. CBSD could be diagnosed in the early days of life by expanded newborn screening (ENS), however, the risk of false negative results is not negligible. In Emilia-Romagna (Italy), during the first 10 years of screening experience, only three cases of CBSD identified have been diagnosed, all in the last two years (incidence 1:118,000 live births). We present the cases and a comprehensive review of the literature to emphasize the role of ENS for early diagnosis of CBSD and its potential pitfalls, reiterating the need for a more effective method to screen for CBSD.
Collapse
Affiliation(s)
- Egidio Candela
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Michele Zagariello
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Valeria Di Natale
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Rita Ortolano
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-214-3168
| | - Francesca Righetti
- Centro Laboratoristico Regionale di Riferimento Screening Neonatale e Malattie Endocrino-Metaboliche, UO Pediatria IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Assirelli
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giacomo Biasucci
- The Pediatric Unit, Maternal and Child Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Alessandra Cassio
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Baronio
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
19
|
Majtan T, Kožich V, Kruger WD. Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria. Br J Pharmacol 2023; 180:264-278. [PMID: 36417581 PMCID: PMC9822868 DOI: 10.1111/bph.15991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D. Kruger
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
20
|
Gonzalez A, Smith GH, Gambello MJ, Sokolová J, Kožich V, Li H. Elevated homocysteine levels: What inborn errors of metabolism might we be missing? Am J Med Genet A 2023; 191:130-134. [PMID: 36271828 DOI: 10.1002/ajmg.a.63001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Elevated total plasma homocysteine (hyperhomocysteinemia) is a marker of cardiovascular, thrombotic, and neuropsychological disease. It has multiple causes, including the common nutritional vitamin B12 or folate deficiency. However, some rare but treatable, inborn errors of metabolism (IEM) characterized by hyperhomocysteinemia can be missed due to variable presentations and the lack of awareness. The aim of this study is to identify undiagnosed IEM in adults with significantly elevated homocysteine using key existing clinical data points, then IEM specific treatment can be offered to improve outcome. We conducted a retrospective study with data mining and chart review of patients with plasma total homocysteine >30 μmol/L over a two-year period. We offer biochemical and genetic testing to patients with significant hyperhomocysteinemia without a clear explanation to diagnose IEM. We identified 22 subjects with significant hyperhomocysteinemia but no clear explanation. Subsequently, we offered genetic testing to seven patients and diagnosed one patient with classic homocystinuria due to cystathionine beta-synthase deficiency. With treatment, she lowered her plasma homocysteine and improved her health. This study stresses the importance of a thorough investigation of hyperhomocysteinemia in adults to identify rare but treatable IEM. We propose a metabolic evaluation algorithm for elevated homocysteine levels.
Collapse
Affiliation(s)
- Aixa Gonzalez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Genetics Section, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Geoffrey Hughes Smith
- Department of Pathology, Emory University, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Efficacy and pharmacokinetics of betaine in CBS and cblC deficiencies: a cross-over randomized controlled trial. Orphanet J Rare Dis 2022; 17:417. [PMID: 36376887 PMCID: PMC9664596 DOI: 10.1186/s13023-022-02567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Betaine is an "alternate" methyl donor for homocysteine remethylation catalyzed by betaine homocysteine methyltransferase (BHMT), an enzyme mainly expressed in the liver and kidney. Betaine has been used for more than 30 years in pyridoxine non-responsive cystathionine beta-synthase (pnrCBS) and cobalamin C (cblC) deficiencies to lower the hyperhomocysteinemia, although little is known about the optimal therapeutic dosage and its pharmacokinetic in these patients. AIMS We compared 2 betaine doses (100 mg/kg/day vs. 250 mg/kg/day) in children affected by pnrCBS or cblC deficiencies. We also measured the pharmacokinetics parameters after a single dose of betaine (100 or 250 mg/kg) in these patients. METHODS We conducted a prospective, randomized, crossover clinical trial with blinded evaluation. The primary outcome was the equivalence of total plasma homocysteine (tHcy) concentrations upon one-month oral treatment with betaine at 100 versus 250 mg/kg/day. RESULTS Eleven patients completed the study (5 pnrCBS and 6 cblC). tHcy concentrations were equivalent after a one-month treatment period for the two betaine dosages. Multivariate analysis showed a significant effect of betaine dose on methionine (Met) (p = 0.01) and S-adenosylmethionine (SAM) concentrations (p = 0.006). CONCLUSIONS Our analysis shows that there is no overt benefit to increasing betaine dosage higher than 100 mg/kg/day to lower tHcy concentrations in pnrCBS and cblC deficiencies. However, increasing betaine up to 250 mg/kg/d could benefit cblC patients through the increase of methionine and SAM concentrations, as low Met and SAM concentrations are involved in the pathophysiology of this disease. In contrast, in pnrCBS deficiency, betaine doses higher than 100 mg/kg/day could be harmful to these patients with pre-existing hypermethioninemia. TRIAL REGISTRATION Clinical Trials, NCT02404337. Registered 23 May 2015-prospectively registered, https://clinicaltrials.gov .
Collapse
|
22
|
Mütze U, Gleich F, Garbade SF, Plisson C, Aldámiz-Echevarría L, Arrieta F, Ballhausen D, Zielonka M, Petković Ramadža D, Baumgartner MR, Cano A, García Jiménez MC, Dionisi-Vici C, Ješina P, Blom HJ, Couce ML, Meavilla Olivas S, Mention K, Mochel F, Morris AAM, Mundy H, Redonnet-Vernhet I, Santra S, Schiff M, Servais A, Vitoria I, Huemer M, Kožich V, Kölker S. Postauthorization safety study of betaine anhydrous. J Inherit Metab Dis 2022; 45:719-733. [PMID: 35358327 DOI: 10.1002/jimd.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022]
Abstract
Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013-2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0-9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 μmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≥ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | | | | | - Francisco Arrieta
- Endocrinology & Nutrition, Metabolic Congenital Disease, H.U. Ramon y Cajal, Madrid, Spain
| | - Diana Ballhausen
- Pediatric Unit for Metabolic Diseases, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthias Zielonka
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU La Timone Enfants, Marseille, France
| | | | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Henk J Blom
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Silvia Meavilla Olivas
- Pediatrics, Gastroenterology, Hepatology and Nutrition, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Karine Mention
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Jeanne de Flandre, Lille, France
| | - Fanny Mochel
- Ap.HP, Sorbonne University, Reference Center for Adult Neurometabolic Diseases, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Andrew A M Morris
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Trust, Manchester, UK
| | - Helen Mundy
- Evelina London Children's Hospital, London, UK
| | - Isabelle Redonnet-Vernhet
- Endocrinology, Nutrition and Metabolic Diseases, Haut-Lévêque Hospital, Bordeaux University, Bordeaux, France
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Aude Servais
- Nephrology and Transplantation, MAMEA Reference Center, Necker hospital, APHP, Paris, France
| | - Isidro Vitoria
- Unit of Metabolic Disorders, Universitary Hospital La Fe, Valencia, Spain
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
23
|
Kölker S, Gleich F, Mütze U, Opladen T. Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Front Endocrinol (Lausanne) 2022; 13:832063. [PMID: 35317224 PMCID: PMC8934440 DOI: 10.3389/fendo.2022.832063] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Rare diseases, such as inherited metabolic diseases, have been identified as a health priority within the European Union more than 20 years ago and have become an integral part of EU health programs and European Reference Networks. Having the potential to pool data, to achieve sufficient sample size, to overcome the knowledge gap on rare diseases and to foster epidemiological and clinical research, patient registries are recognized as key instruments to evidence-based medicine for individuals with rare diseases. Patient registries can be used for multiple purposes, such as (1) describing the natural history and phenotypic diversity of rare diseases, (2) improving case definition and indication to treat, (3) identifying strategies for risk stratification and early prediction of disease severity (4), evaluating the impact of preventive, diagnostic, and therapeutic strategies on individual health, health economics, and the society, and (5) informing guideline development and policy makers. In contrast to clinical trials, patient registries aim to gather real-world evidence and to achieve generalizable results based on patient cohorts with a broad phenotypic spectrum. In order to develop a consistent and sustained framework for rare disease registries, uniform core principles have been formulated and have been formalized through the European Rare Disease Registration Infrastructure. Adherence to these core principles and compliance with the European general data protection regulations ensures that data collected and stored in patient registries can be exchanged and pooled in a protected environment. To illustrate the benefits and limitations of patient registries on rare disease research this review focuses on inherited metabolic diseases.
Collapse
|
24
|
Tsuji-Hosokawa A, Kashimada K. Thirty-Year Lessons from the Newborn Screening for Congenital Adrenal Hyperplasia (CAH) in Japan. Int J Neonatal Screen 2021; 7:ijns7030036. [PMID: 34209888 PMCID: PMC8293132 DOI: 10.3390/ijns7030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH) is an inherited disorder caused by the absence or severely impaired activity of steroidogenic enzymes involved in cortisol biosynthesis. More than 90% of cases result from 21-hydroxylase deficiency (21OHD). To prevent life-threatening adrenal crisis and to help perform appropriate sex assignments for affected female patients, newborn screening (NBS) programs for the classical form of CAH have been introduced in numerous countries. In Japan, the NBS for CAH was introduced in 1989, following the screenings for phenylketonuria and congenital hypothyroidism. In this review, we aim to summarize the experience of the past 30 years of the NBS for CAH in Japan, composed of four parts, 1: screening system in Japan, 2: the clinical outcomes for the patients with CAH, 3: various factors that would impact the NBS system, including timeline, false positive, and LC-MS/MS, 4: Database composition and improvement of the screening program.
Collapse
Affiliation(s)
- Atsumi Tsuji-Hosokawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
- Correspondence:
| |
Collapse
|
25
|
Kožich V, Sokolová J, Morris AAM, Pavlíková M, Gleich F, Kölker S, Krijt J, Dionisi‐Vici C, Baumgartner MR, Blom HJ, Huemer M. Cystathionine β-synthase deficiency in the E-HOD registry-part I: pyridoxine responsiveness as a determinant of biochemical and clinical phenotype at diagnosis. J Inherit Metab Dis 2021; 44:677-692. [PMID: 33295057 PMCID: PMC8247016 DOI: 10.1002/jimd.12338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency has a wide clinical spectrum, ranging from neurodevelopmental problems, lens dislocation and marfanoid features in early childhood to adult onset disease with predominantly thromboembolic complications. We have analysed clinical and laboratory data at the time of diagnosis in 328 patients with CBS deficiency from the E-HOD (European network and registry for Homocystinurias and methylation Defects) registry. We developed comprehensive criteria to classify patients into four groups of pyridoxine responsivity: non-responders (NR), partial, full and extreme responders (PR, FR and ER, respectively). All groups showed overlapping concentrations of plasma total homocysteine while pyridoxine responsiveness inversely correlated with plasma/serum methionine concentrations. The FR and ER groups had a later age of onset and diagnosis and a longer diagnostic delay than NR and PR patients. Lens dislocation was common in all groups except ER but the age of dislocation increased with increasing responsiveness. Developmental delay was commonest in the NR group while no ER patient had cognitive impairment. Thromboembolism was the commonest presenting feature in ER patients, whereas it was least likely at presentation in the NR group. This probably is due to the differences in ages at presentation: all groups had a similar number of thromboembolic events per 1000 patient-years. Clinical severity of CBS deficiency depends on the degree of pyridoxine responsiveness. Therefore, a standardised pyridoxine-responsiveness test in newly diagnosed patients and a critical review of previous assessments is indispensable to ensure adequate therapy and to prevent or reduce long-term complications.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Andrew A. M. Morris
- Manchester Centre for Genomic MedicineManchester University Hospitals NHS TrustManchesterUK
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University‐Faculty of Mathematics and PhysicsPragueCzech Republic
| | - Florian Gleich
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent MedicineUniversity HospitalHeidelbergGermany
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Paediatric and Adolescent MedicineUniversity HospitalHeidelbergGermany
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic DisordersCharles University‐First Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Carlo Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Research Hospital, IRCCSRomeItaly
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- University of ZürichZürichSwitzerland
| | - Henk J. Blom
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus Medical CenterRotterdamNetherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Department of PediatricsLandeskrankenhaus BregenzBregenzAustria
| | | |
Collapse
|
26
|
Tankeu AT, Van Winckel G, Campos-Xavier B, Braissant O, Pedro R, Superti-Furga A, Amati F, Tran C. Classical homocystinuria, is it safe to exercise? Mol Genet Metab Rep 2021; 27:100746. [PMID: 33868930 PMCID: PMC8042175 DOI: 10.1016/j.ymgmr.2021.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 10/25/2022] Open
Abstract
Background Cystationine β-synthase (CBS) deficiency is a genetic disorder characterized by severe hyperhomocysteinemia and thrombotic complications. In healthy individuals, physical exercise may result in a transient increase in plasma total homocysteine (tHcy) raising the possibility that exercise might be detrimental in CBS deficiency. Our main objective was to determine plasma tHcy kinetics in response to physical exercise in homocystinuria patients. Methods Six adult patients (2 males, 4 females) with homocystinuria and 6 age- and gender-matched controls completed a 30-min aerobic exercise of moderate-intensity with fixed power output (50 W for women and 100 W for men). Blood samples were drawn before, immediately, 180 min and 24 h after exercise. tHcy levels were determined by standard procedures; substrate oxidation and energy expenditure were measured using indirect calorimetry. Results Acute exercise was well tolerated and safe in patients and controls. During the exercise bout, heart rate and energy expenditure increased equally in both groups. tHcy levels were higher in patients compared to controls at all time points (p < 0.05). There was no significant effect of exercise on tHcy levels at any time point (p = 0.36). Although two patients with partial pyridoxine responsiveness presented higher homocysteine responses, their highest value remained below 55 μmol/l. Conclusions Overall metabolic responses to acute exercise were similar between homocystinuria patients and controls; specifically, exercise did not significantly change tHcy concentrations. Moderate physical exercise was well tolerated without any adverse event in our cohort of patients. Further studies are needed to identify the effects of different intensities and modes of exercise in larger cohorts of CBS patients with different levels of pyridoxine responsiveness.
Collapse
Affiliation(s)
- Aurel T Tankeu
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Geraldine Van Winckel
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Rosette Pedro
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Morrison T, Bösch F, Landolt MA, Kožich V, Huemer M, Morris AAM. Homocystinuria patient and caregiver survey: experiences of diagnosis and patient satisfaction. Orphanet J Rare Dis 2021; 16:124. [PMID: 33691747 PMCID: PMC7945666 DOI: 10.1186/s13023-021-01764-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background The main genetic causes of homocystinuria are cystathionine beta-synthase (CBS) deficiency and the remethylation defects. Many patients present in childhood but milder forms may present later in life. Some countries have newborn screening programs for the homocystinurias but these do not detect all patients.
Results HCU Network Australia is one of the very few support groups for patients with homocystinurias. Here we report the results of its survey of 143 patients and caregivers from 22 countries, evaluating current diagnostic pathways and management for the homocystinurias. Most (110) of the responses related to patients with CBS deficiency. The diagnosis was made by newborn screening in 20% of patients and in 50% of the others within 1 year of the initial symptom but in 12.5% it took over 15 years. The delay was attributed mainly to ignorance of the disease. Physicians need to learn to measure homocysteine concentrations in children with neurodevelopmental problems, and in patients with heterogeneous symptoms such as thromboembolism, dislocation of the optic lens, haemolytic uraemic syndrome, and psychiatric disease. Even when the diagnosis is made, the way it is communicated is sometimes poor. Early-onset CBS deficiency usually requires a low-protein diet with amino acid supplements. More than a third of the participants reported problems with the availability or cost of treatment. Only half of the patients always took their amino acid mixture. In contrast, good adherence to the protein restriction was reported in 98% but 80% said it was hard, time-consuming and caused unhappiness. Conclusions There is often a long delay in diagnosing the homocystinurias unless this is achieved by newborn screening; this survey also highlights problems with the availability and cost of treatment and the palatability of protein substitutes.
Collapse
Affiliation(s)
- T Morrison
- HCU Network Australia, Baulkham Hills, Australia
| | - F Bösch
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - M A Landolt
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,Department of Psychosomatics and Psychiatry and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - V Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, General University Hospital, Prague, Czech Republic
| | - M Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland. .,Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria.
| | - A A M Morris
- Division of Evolution and Genomic Sciences, Institute of Human Development, University of Manchester, Manchester, UK.,Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|