1
|
Crenshaw MM, D'Annibale OM, Schechter A, Sethuraman M, Porter C, Bonn G, Wright E, Wood T, Vockley J, Hall PL, Se M. Newborn screening follow-up for very long-chain acyl-CoA dehydrogenase deficiency in Colorado: Working towards a standardized protocol. Mol Genet Metab 2025; 145:109104. [PMID: 40215729 DOI: 10.1016/j.ymgme.2025.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive fatty acid β-oxidation disorder that has been identified by newborn screening (NBS) in most states since the early 2000s. Despite over 20 years of experience, there are aspects of VLCADD NBS that remain challenging. We conducted a retrospective chart review of abnormal NBS for VLCADD in Colorado between 2017 and 2023. We analyzed confirmatory plasma acylcarnitine profiles (P-ACP), genetic sequencing of ACADVL, Collaborative Laboratory Integrated Reports (CLIR) scores, patient enzyme analysis of VLCAD, and cell-based variant expression analysis. A real-world "Clinical Designation" was then compared to a variety of algorithms trialed on the data. Of the 67 infants with abnormal screens during this timeframe, 5 (7 %) had a Clinical Designation of affected, 4 (6 %) remained unclassified, and 58 (87 %) were discharged based on a designation of unaffected. A Kruskal-Wallis rank sum test showed the biomarker with the best discrimination between affected and unaffected individuals was C14:1/C12:1 [chi-squared 10.4 (p = 0.001)]. The highest performing algorithm was (Molecular testing + cell-based expression) + (P-ACP C14:1 OR P-ACP C14:1/C12:1). Excluding the missing data, this algorithm showed 96 % (46 of 48) agreement with the Clinical Designation. We conclude that there is not a single biomarker that can specifically discern affected from unaffected individuals who screen positive on NBS for VLCADD. Thus, we developed a standardized diagnostic approach to more accurately classify patients that starts with the molecular findings and requires at least one of the P-ACP C14:1 or P-ACP C14:1/C12:1 to agree with molecular findings. The algorithm needs to be trialed with a different data set, and will advance the conversation around maximizing benefits and minimizing harms for infants who screen positive for VLCADD.
Collapse
Affiliation(s)
- M M Crenshaw
- University of Colorado School of Medicine, Department of Pediatrics, Section of Genetics and Metabolism, 13123 E. 16th Ave. B065, Aurora, CO 80045, USA.
| | - O M D'Annibale
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, CO 80045, USA
| | - A Schechter
- Division of Rheumatology, University of Colorado School of Medicine, 1635 Aurora Court Anschutz Outpatient Pavilion, 4th floor, Aurora, CO 80045, USA
| | - M Sethuraman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave., Administrative Office Building, Suite 5300, Pittsburgh, PA 15224, USA
| | - C Porter
- Colorado Department of Public Health & Environment, 4300 Cherry Creek Drive, South Denver, CO 80246, USA
| | - G Bonn
- Colorado Department of Public Health & Environment, 4300 Cherry Creek Drive, South Denver, CO 80246, USA
| | - E Wright
- University of Colorado School of Medicine, Department of Pediatrics, Section of Genetics and Metabolism, 13123 E. 16th Ave. B065, Aurora, CO 80045, USA
| | - T Wood
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, CO 80045, USA
| | - J Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave., Administrative Office Building, Suite 5300, Pittsburgh, PA 15224, USA
| | - P L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St., Rochester, MN 55905, USA
| | - McCandless Se
- University of Colorado School of Medicine, Department of Pediatrics, Section of Genetics and Metabolism, 13123 E. 16th Ave. B065, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Zhou W, Li H, Yang L. Genetic analyses of very long-chain acyl-coenzyme A dehydrogenase deficiency: A case report with a novel ACADVL variant. Mol Genet Metab Rep 2025; 42:101184. [PMID: 39816989 PMCID: PMC11733273 DOI: 10.1016/j.ymgmr.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Background Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disease associated with variants in the ACADVL gene. Methods In December 2021, a neonate with VLCADD was identified via newborn screening in Xuzhou, China. Genetic testing and genetic family verification were performed via high-throughput sequencing combined with Sanger sequencing. The pathogenicity and functional impacts of novel variants were predicted using bioinformatics methods. Results Initial results obtained from tandem mass spectrometry blood screening were suggestive of VLCADD. Two compound heterozygous variants, c.753 T > G (p.S251R) and c.1276G > A (p.A426T), inherited from the father and mother, respectively, were detected in the ACADVL gene of this individual. The c.753 T > G variant is novel and unreported. Conclusion These findings broaden the known mutational spectrum of the ACADVL gene in a Chinese population.
Collapse
Affiliation(s)
- Wei Zhou
- Newborn Screening Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Huizhong Li
- Newborn Screening Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Li Yang
- Newborn Screening Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
3
|
Vieira Neto E, Wang M, Szuminsky AJ, Ferraro L, Koppes E, Wang Y, Van’t Land C, Mohsen AW, Zanatta G, El-Gharbawy AH, Anthonymuthu TS, Tyurina YY, Tyurin VA, Kagan V, Bayır H, Vockley J. Mitochondrial bioenergetics and cardiolipin remodeling abnormalities in mitochondrial trifunctional protein deficiency. JCI Insight 2024; 9:e176887. [PMID: 39088276 PMCID: PMC11385086 DOI: 10.1172/jci.insight.176887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.
Collapse
Affiliation(s)
- Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Children’s Neuroscience Institute, Department of Pediatrics, School of Medicine, and
| | - Meicheng Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Austin J. Szuminsky
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lethicia Ferraro
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- School of Medicine and
| | - Erik Koppes
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Yudong Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Clinton Van’t Land
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Al-Walid Mohsen
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Geancarlo Zanatta
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Areeg H. El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Valerian Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
- Department of Pharmacology and Chemical Biology, School of Medicine; Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences; and Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jerry Vockley
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Department of Human Genetics, School of Public Health, Center for Rare Disease Therapy, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Daher RT, Taoum KE, Samaha J, Karam PE. Diagnostic challenges and outcome of fatty acid oxidation defects in a tertiary care center in Lebanon. Orphanet J Rare Dis 2024; 19:315. [PMID: 39210374 PMCID: PMC11363453 DOI: 10.1186/s13023-024-03325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fatty acid oxidation defects are rare autosomal recessive disorders with variable clinical manifestations and outcome. Early detection by systematic neonatal screening may improve their prognosis. Long-term outcome studies of these disorders in the Middle East and North Africa region are limited. The purpose of this study is to report the diagnostic challenges and outcome of fatty acid oxidation defects in a major tertiary care center in Lebanon, a resource-constrained country in the Middle East. METHODS A retrospective review of charts of all fatty acid oxidation defects sequential patients diagnosed and followed at our center was conducted. Collected data included: parental consanguinity, age at diagnosis, clinical presentation, biochemical profile, confirmatory diagnosis, treatment and outcome. A genotype-phenotype correlation was also performed, when available. RESULTS Seven types of fatty acid oxidation defects were identified in a total of 34 patients from 21 families. Most families (79%) were consanguineous (first-degree cousins). The majority were diagnosed when clinically symptomatic (78%), at various ages between 10 days and 19 years (average: 2 years). Follow-up duration spanned between 2 months and 15 years (average: 5 years). The remainder of the patients were detected while still asymptomatic by systematic neonatal screening (9%) or due to positive family history (9%). The most common defect was carnitine transporter deficiency (50%) with an exclusive cardiac presentation related to a founder variant c.981C > T, (p.Arg254*) in the SLC22A5 gene. Medium chain acyl-CoA dehydrogenase deficiency was found in 13% only, which could be explained by the absence of systematic neonatal screening. Rare gene variants were detected in very long chain and multiple acyl-CoA dehydrogenase deficiency. The worse prognosis was observed in very long chain acyl-CoA dehydrogenase deficiency. The overall survival at last follow-up reached 75% with a complete reversal of symptoms with treatment in most patients (63%), despite their late diagnosis. CONCLUSIONS Our experience highlights the diagnostic challenges and outcome of fatty acid oxidation defects in a resource-constrained country with high consanguinity rates. Physicians' awareness and systematic neonatal screening are key for diagnosis. Larger genotype-phenotype studies are still needed to understand the natural history of these rare diseases and possibly improve their outcome.
Collapse
Affiliation(s)
- Rose T Daher
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Katia El Taoum
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jinane Samaha
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
5
|
Lin Y, Lin C, Lin B, Zheng Z, Lin W, Chen Y, Chen D, Peng W. Newborn screening for fatty acid oxidation disorders in a southern Chinese population. Heliyon 2024; 10:e23671. [PMID: 38187300 PMCID: PMC10770602 DOI: 10.1016/j.heliyon.2023.e23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background and aims Fatty acid oxidation disorders (FAODs) are a group of autosomal recessive metabolic diseases included in many newborn screening (NBS) programs, but the incidence and disease spectrum vary widely between ethnic groups. We aimed to elucidate the incidence, disease spectrum, and genetic features of FAODs in a southern Chinese population. Materials and methods The FAODs screening results of 643,606 newborns from 2014 to 2022 were analyzed. Results Ninety-two patients were eventually diagnosed with FAODs, of which 61 were PCD, 20 were MADD, 5 were SCADD, 4 were VLCADD, and 2 were CPT-IAD. The overall incidence of FAODs was 1:6996 (95 % CI: 1:5814-1:8772) newborns. All PCD patients had low C0 levels during NBS, while nine patients (14.8 %) had normal C0 levels during the recall review. All but one MADD patients had elevated C8, C10, and C12 levels during NBS, while eight patients (40 %) had normal acylcarnitine levels during the recall review. The most frequent SLC22A5 variant was c.760C > T (p.R254*) with an allele frequency of 29.51 %, followed by c.51C > G (p.F17L) (17.21 %) and c.1400C > G (p.S467C) (16.39 %). The most frequent ETFDH variant was c.250G > A (p.A84T) with an allelic frequency of 47.5 %, followed by c.524G > A (R175H) (12.5 %), c.998A > G (p.Y333C) (12.5 %), and c.1657T > C (p.Y553H) (7.5 %). Conclusion The prevalence, disease spectrum, and genetic characteristics of FAODs in a southern Chinese population were clarified. PCD was the most common FAOD, followed by MADD. Hotspot variants were found in SLC22A5 and ETFDH genes, while the remaining FAODs showed great molecular heterogeneity. Incorporating second-tier genetic screening is critical for FAODs.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Chunmei Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Bangbang Lin
- Administrative office, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Zhenzhu Zheng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weihua Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Yanru Chen
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Dongmei Chen
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weilin Peng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| |
Collapse
|
6
|
Muñoz-Pujol G, Ugarteburu O, Segur-Bailach E, Moliner S, Jurado S, Garrabou G, Guitart-Mampel M, García-Villoria J, Artuch R, Fons C, Ribes A, Tort F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis 2023; 46:1029-1042. [PMID: 37718653 DOI: 10.1002/jimd.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.
Collapse
Affiliation(s)
- Gerard Muñoz-Pujol
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Eulàlia Segur-Bailach
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sonia Moliner
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Susana Jurado
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER, Esplúgues de Llobregat, Barcelona, Spain
| | - Carme Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
7
|
Flowers M, Dickson A, Miller MJ, Spector E, Enns GM, Baudet H, Pasquali M, Racacho L, Sadre-Bazzaz K, Wen T, Fogarty M, Fernandez R, Weaver MA, Feigenbaum A, Graham BH, Mao R. Specifications of the ACMG/AMP guidelines for ACADVL variant interpretation. Mol Genet Metab 2023; 140:107668. [PMID: 37549443 PMCID: PMC10811274 DOI: 10.1016/j.ymgme.2023.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.
Collapse
Affiliation(s)
- May Flowers
- Invitae Corporation, San Francisco, CA 94103, USA
| | - Alexa Dickson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elaine Spector
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gregory Mark Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University, Stanford, CA 94304, USA
| | - Heather Baudet
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories, Salt Lake City, UT 84108, USA
| | - Lemuel Racacho
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta T3B6A8, Canada
| | | | - Ting Wen
- ARUP Laboratories, Salt Lake City, UT 84108, USA
| | | | - Raquel Fernandez
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| | - Meredith A Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA
| | - Annette Feigenbaum
- Department of Pediatrics, Division of Genetics, Rady Children's Hospital and The University of California, San Diego, CA 92123, USA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories, Salt Lake City, UT 84108, USA.
| |
Collapse
|
8
|
Kishita Y, Sugiura A, Onuki T, Ebihara T, Matsuhashi T, Shimura M, Fushimi T, Ichino N, Nagatakidani Y, Nishihata H, Nitta KR, Yatsuka Y, Imai-Okazaki A, Wu Y, Osaka H, Ohtake A, Murayama K, Okazaki Y. Strategic validation of variants of uncertain significance in ECHS1 genetic testing. J Med Genet 2023; 60:1006-1015. [PMID: 37055166 DOI: 10.1136/jmg-2022-109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.
Collapse
Affiliation(s)
- Yoshihito Kishita
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Takanori Onuki
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Tomohiro Ebihara
- Department of Neonatology, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Tetsuro Matsuhashi
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Noriko Ichino
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshie Nagatakidani
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Hitomi Nishihata
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneve, Switzerland
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
- Center for Medical Genetics, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Kemp S, Orsini JJ, Ebberink MS, Engelen M, Lund TC. VUS: Variant of uncertain significance or very unclear situation? Mol Genet Metab 2023; 140:107678. [PMID: 37574344 DOI: 10.1016/j.ymgme.2023.107678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
The advancements in population screening, including newborn screening, enables the identification of disease-causing variants and timely initiation of treatment. However, screening may also identify mild variants, non-disease variants, and variants of uncertain significance (VUS). The identification of a VUS poses a challenge in terms of diagnostic uncertainty and confusion. X-linked adrenoleukodystrophy (ALD) serves as an illustrative example of this complex issue. ALD is a monogenic neurometabolic disease with a complex clinical presentation and a lack of predictive tests for clinical severity. Despite the success of ALD newborn screening, a significant proportion (62%) of missense variants identified through newborn screening exhibit uncertainty regarding their pathogenicity. Resolving this issue requires ongoing efforts to accurately classify variants and refine screening protocols. While it is undisputable that ALD newborn screening greatly benefits boys with the disease, the identification of VUS underscores the need for continuous research and collaboration in improving screening practices.
Collapse
Affiliation(s)
- Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Joseph J Orsini
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Merel S Ebberink
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Troy C Lund
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
10
|
Sebaa R, AlMalki RH, Alseraty W, Abdel Rahman AM. A Distinctive Metabolomics Profile and Potential Biomarkers for Very Long Acylcarnitine Dehydrogenase Deficiency (VLCADD) Diagnosis in Newborns. Metabolites 2023; 13:725. [PMID: 37367883 DOI: 10.3390/metabo13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Very long-chain acylcarnitine dehydrogenase deficiency (VLCADD) is a rare inherited metabolic disorder associated with fatty acid β-oxidation and characterized by genetic mutations in the ACADVL gene and accumulations of acylcarnitines. VLCADD, developed in neonates or later adults, can be diagnosed using newborn bloodspot screening (NBS) or genetic sequencing. These techniques have limitations, such as a high false discovery rate and variants of uncertain significance (VUS). As a result, an extra diagnostic tool is needed to deliver improved performance and health outcomes. As VLCADD is linked with metabolic disturbance, we postulated that newborn patients with VLCADD could display a distinct metabolomics pattern compared to healthy newborns and other disorders. Herein, we applied an untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to measure the global metabolites in dried blood spot (DBS) cards collected from VLCADD newborns (n = 15) and healthy controls (n = 15). Two hundred and six significantly dysregulated endogenous metabolites were identified in VLCADD, in contrast to healthy newborns. Fifty-eight and one hundred and eight up- and down-regulated endogenous metabolites were involved in several pathways such as tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism and pantothenate, and CoA biosynthesis. Furthermore, biomarker analyses identified 3,4-Dihydroxytetradecanoylcarnitine (AUC = 1), PIP (20:1)/PGF1alpha) (AUC = 0.982), and PIP2 (16:0/22:3) (AUC = 0.978) as potential metabolic biomarkers for VLCADD diagnosis. Our findings showed that compared to healthy newborns, VLCAADD newborns exhibit a distinctive metabolic profile, and identified potential biomarkers that can be used for early diagnosis, which improves the identification of the affected patients earlier. This allows for the timely administration of proper treatments, leading to improved health. However, further studies with large independent cohorts of VLCADD patients with different ages and phenotypes need to be studied to validate our potential diagnostic biomarkers and their specificity and accuracy during early life.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Reem H AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Wafaa Alseraty
- Department of Nursing, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Medical Genetics Branch, Chinese Medical Association DOBAM, Chinese Association for Maternal and Child Health DOGAMCDAHCB. Expert consensus on diagnosis and treatment of very long-chain acyl-CoA dehydrogenase deficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:122-128. [PMID: 36161784 PMCID: PMC9109756 DOI: 10.3724/zdxbyxb-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 06/16/2023]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a metabolic disease of long chain fatty acid oxidation. The clinical manifestations are heterogeneous, mainly with heart, liver, skeletal muscle and brain damage, and the onset of which can be from newborn to adult. Cardiomyopathy type is more serious with high mortality. The liver failure type and myopathy type would be potentially lethal, but generally the prognosis is relatively good. Recurrent hypoglycemia, energy metabolism disorder, liver dysfunction, cardiomyopathy and serious arrhythmia are the main causes of death. Most patients can be identified through neonatal screening, and the prognosis is usually good in patients with early diagnosis and treatment. The purpose of this consensus is to standardize the diagnosis, treatment and management of VLCAD deficiency, so as to improve the prognosis of patients and reduce death and disability.
Collapse
|