1
|
Stepien KM, McSweeney M, Ochoa-Ferraro A, Vara R, Riley P, Smith M. Perspectives on long-term medical management of urea cycle disorders: insights from a survey of UK healthcare professionals. Orphanet J Rare Dis 2025; 20:135. [PMID: 40102865 PMCID: PMC11921535 DOI: 10.1186/s13023-025-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/01/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Urea cycle disorders (UCDs) are rare inborn errors of metabolism which impact the body's ability to detoxify ammonia produced during protein metabolism. In the UK, there is a nationally adopted guideline for the emergency management of hyperammonaemia in UCD patients, however there is no guideline for long‑term management, and treatment decisions are left to the discretion of individual healthcare professionals (HCPs). RESULTS Twenty-three HCPs, comprising 13 (57%) metabolic consultants, two (9%) specialist nurses, four (17%) pharmacists, and four (17%) dietitians, participated in interviews to document their attitudes and beliefs regarding the long‑term management of UCD patients, including their current practices, treatment goals, and clinical ambitions. The highest priority for 14/23 (61%) of HCPs was to minimise the risk of hyperammonaemia, however the ammonia level that HCPs advised they aimed for varied significantly, with some targeting above the upper limit of normal. Glycerol phenylbutyrate was the highest ranked ammonia scavenger treatment amongst HCPs for safety, tolerability, duration of scavenging action and reducing patient burden, and HCPs suggested that it would be the first-line treatment in an updated guideline. All prescribing HCPs agreed they would prefer their patients receive a licenced product rather than an unlicensed one for reasons including more reliable supply, greater insurance/legitimacy, and the reassurance of regulatory scrutiny and approval. However, analysis of NHS England's dispensing data between July 2023 and June 2024 indicated annual spend on nitrogen scavengers of £6.7 million with unlicensed specials accounting for £3 million (45%) of the total. Differences between HCPs in the awareness of clinically relevant characteristics of ammonia scavengers, including their sodium and propylene glycol content, were observed. CONCLUSIONS To standardise the treatment of UCDs within and between metabolic centres in the UK, there is merit in developing a UK-specific treatment guideline.
Collapse
Affiliation(s)
- Karolina M Stepien
- Adult Inherited Metabolic Disease Department, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford, M6 8HD, UK
| | - Melanie McSweeney
- Department of Paediatric Inherited Metabolic Disease, Great Ormond Street Hospital NHS Foundation Trust, London, WC1N 3JH, UK
| | - Antonio Ochoa-Ferraro
- Adult Inherited Metabolic Disease Service, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Roshni Vara
- Department of Paediatric Inherited Metabolic Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Paul Riley
- Nexcea, Glasshouse, Alderley Park, Macclesfield, SK10 4ZE, UK.
| | - Megan Smith
- Nexcea, Glasshouse, Alderley Park, Macclesfield, SK10 4ZE, UK
| |
Collapse
|
2
|
Bahadoran E, Saffari F, Ramezani M, Moghbelinejad S. A novel de novo missense OTC mutation in an Iranian girl: a case report. J Pediatr Endocrinol Metab 2025; 38:90-94. [PMID: 39584195 DOI: 10.1515/jpem-2024-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVES Ornithine transcarbamylase deficiency (OTCD) is the most common inborn error of the urea cycle, caused by mutations in the OTC gene located on the X chromosome. OTCD presents in early and late-onset forms, with variable severity. Despite the high genetic heterogeneity, genotype-phenotype correlations help in prognosis and treatment planning. This study presents a novel missense mutation in an Iranian girl with OTCD, occurring de novo, contributing to the understanding of the disease's genetic landscape. CASE PRESENTATION A 2-year-old girl from a consanguineous marriage presented with nausea, recurrent vomiting, and seizure. Elevated plasma ammonia, liver enzyme tests, and hepatomegaly suggested metabolic disorders. Following whole exome test, a novel heterozygous missense mutation in exon 7 of the OTC gene (c.674C>T) was identified in the patient. Despite maternal and paternal testing, no mutation was detected. CONCLUSIONS Identifying new mutations in populations helps mitigate the high mortality rates associated with OTCD hyperammonemic episodes and provides the best course of treatment, especially considering the diverse phenotypic variations.
Collapse
Affiliation(s)
- Ensiyeh Bahadoran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Saffari
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin, Iran
| | | | - Sahar Moghbelinejad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
3
|
Caldovic L, Ahn JJ, Andricovic J, Balick VM, Brayer M, Chansky PA, Dawson T, Edwards AC, Felsen SE, Ismat K, Jagannathan SV, Mann BT, Medina JA, Morizono T, Morizono M, Salameh S, Vashist N, Williams EC, Zhou Z, Morizono H. Datamining approaches for examining the low prevalence of N-acetylglutamate synthase deficiency and understanding transcriptional regulation of urea cycle genes. J Inherit Metab Dis 2024; 47:1175-1193. [PMID: 37847851 PMCID: PMC11586597 DOI: 10.1002/jimd.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Julie J. Ahn
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Jacklyn Andricovic
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Veronica M. Balick
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Mallory Brayer
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Pamela A. Chansky
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Tyson Dawson
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- AMPEL BioSolutions LLCCharlottesvilleVirginiaUSA
| | - Alex C. Edwards
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Sara E. Felsen
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Karim Ismat
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Sveta V. Jagannathan
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical MedicineSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Jacob A. Medina
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Toshio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shatha Salameh
- Department of Pharmacology & PhysiologySchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National HospitalWashingtonDCUSA
| | - Neerja Vashist
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Emily C. Williams
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The George Washington University Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Zhe Zhou
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Hiroki Morizono
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
4
|
Siri B, Olivieri G, Lepri FR, Poms M, Goffredo BM, Commone A, Novelli A, Häberle J, Dionisi-Vici C. Father-to-daughter transmission in late-onset OTC deficiency: an underestimated mechanism of inheritance of an X-linked disease. Orphanet J Rare Dis 2024; 19:3. [PMID: 38167094 PMCID: PMC10763478 DOI: 10.1186/s13023-023-02997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Ornithine Transcarbamylase Deficiency (OTCD) is an X-linked urea cycle disorder characterized by acute hyperammonemic episodes. Hemizygous males are usually affected by a severe/fatal neonatal-onset form or, less frequently, by a late-onset form with milder disease course, depending on the residual enzymatic activity. Hyperammonemia can occur any time during life and patients could remain non- or mis-diagnosed due to unspecific symptoms. In heterozygous females, clinical presentation varies based on the extent of X chromosome inactivation. Maternal transmission in X-linked disease is the rule, but in late-onset OTCD, due to the milder phenotype of affected males, paternal transmission to the females is possible. So far, father-to-daughter transmission of OTCD has been reported only in 4 Japanese families. RESULTS We identified in 2 Caucasian families, paternal transmission of late-onset OTCD with severe/fatal outcome in affected males and 1 heterozygous female. Furthermore, we have reassessed the pedigrees of other published reports in 7 additional families with evidence of father-to-daughter inheritance of OTCD, identifying and listing the family members for which this transmission occurred. CONCLUSIONS Our study highlights how the diagnosis and pedigree analysis of late-onset OTCD may represent a real challenge for clinicians. Therefore, the occurrence of paternal transmission in OTCD should not be underestimated, due to the relevant implications for disease inheritance and risk of recurrence.
Collapse
Affiliation(s)
- Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
- Department of Paediatrics, Città della Salute e della Scienza, OIRM, University of Turin, Turin, Italy.
| | - Giorgia Olivieri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesca Romana Lepri
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martin Poms
- Division of Clinical Chemistry and Biochemistry and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bianca Maria Goffredo
- Division of Metabolism and Metabolic Diseases Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Commone
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
5
|
Hertzog A, Selvanathan A, Farnsworth E, Tchan M, Adams L, Lewis K, Tolun AA, Bennetts B, Ho G, Bhattacharya K. Intronic variants in inborn errors of metabolism: Beyond the exome. Front Genet 2022; 13:1031495. [PMID: 36561316 PMCID: PMC9763607 DOI: 10.3389/fgene.2022.1031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Non-coding regions are areas of the genome that do not directly encode protein and were initially thought to be of little biological relevance. However, subsequent identification of pathogenic variants in these regions indicates there are exceptions to this assertion. With the increasing availability of next generation sequencing, variants in non-coding regions are often considered when no causative exonic changes have been identified. There is still a lack of understanding of normal human variation in non-coding areas. As a result, potentially pathogenic non-coding variants are initially classified as variants of uncertain significance or are even overlooked during genomic analysis. In most cases where the phenotype is non-specific, clinical suspicion is not sufficient to warrant further exploration of these changes, partly due to the magnitude of non-coding variants identified. In contrast, inborn errors of metabolism (IEMs) are one group of genetic disorders where there is often high phenotypic specificity. The clinical and biochemical features seen often result in a narrow list of diagnostic possibilities. In this context, there have been numerous cases in which suspicion of a particular IEM led to the discovery of a variant in a non-coding region. We present four patients with IEMs where the molecular aetiology was identified within non-coding regions. Confirmation of the molecular diagnosis is often aided by the clinical and biochemical specificity associated with IEMs. Whilst the clinical severity associated with a non-coding variant can be difficult to predict, obtaining a molecular diagnosis is crucial as it ends diagnostic odysseys and assists in management.
Collapse
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia,Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Ashley Hertzog,
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Elizabeth Farnsworth
- Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW, Australia
| | - Louisa Adams
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Katherine Lewis
- Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia,Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Bruce Bennetts
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Gladys Ho
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Molecular Genetics, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Kaustuv Bhattacharya
- Disciplines of Genetic Medicine and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Genetic Metabolic Disorders Service, Sydney Children’s Hospitals Network, Sydney, NSW, Australia
| |
Collapse
|
6
|
Knerr I, Cassiman D. Ornithine transcarbamylase deficiency: A diagnostic odyssey. J Inherit Metab Dis 2022; 45:661-662. [PMID: 35734906 PMCID: PMC9541173 DOI: 10.1002/jimd.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ina Knerr
- National Centre for Inherited Metabolic DisordersChildren's Health Ireland (CHI) at Temple StreetDublinRepublic of Ireland
- University College Dublin (UCD)UCD School of MedicineDublinRepublic of Ireland
| | - David Cassiman
- Department of Gastroenterology‐Hepatology and Metabolic CenterUniversity Hospital LeuvenLeuvenBelgium
| |
Collapse
|