1
|
Forsman H, Li W, Levin NK, Karlsson R, Karlsson A, Dahlgren C, Sundqvist M. Activation and signaling characteristics of the hydroxy-carboxylic acid 3 receptor identified in human neutrophils through a microfluidic flow cell technique. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119950. [PMID: 40194600 DOI: 10.1016/j.bbamcr.2025.119950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/05/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Human neutrophils express numerous G protein-coupled receptors (GPCRs) of importance for immune regulation. However, several functionally characterized neutrophil GPCRs, are not included within the human neutrophil proteome. To identify GPCRs not previously demonstrated to be expressed in human neutrophils, we utilized a microfluidic flow cell technique in conjunction with subcellular granule fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach led to the identification of hydroxy-carboxylic acid 3 receptor (HCA3R, also known as GPR109B) as a novel component of the human neutrophil proteome. The β-oxidation intermediate 3-hydroxy-octanoic acid (3-OH-C8) is the primary endogenous agonist of the HCA3R and expressed at high levels in adipocytes where it exerts anti-lipolytic effects. However, literature describing the role and function of HCA3R in human neutrophils is scarce. We show that 3-OH-C8, as well as the synthetic HCA3R agonist IBC 293, activate human neutrophils determined as an increase in the intracellular concentration of free calcium ions ([Ca2+]i) and activation of the NADPH oxidase. However, in contrast to the rise in [Ca2+]i, which could be triggered in naïve neutrophils, pre-treatment of neutrophils was required for the HCA3R agonists to activate the NADPH oxidase. That is, the HCA3R-mediated NADPH oxidase activation occurred only in neutrophils pre-treated with either an actin cytoskeleton disrupter or an allosteric modulator targeting the GPCR termed free fatty acid receptor 2 (FFA2R). Our findings demonstrate that HCA3R is not only a new member of the human neutrophil proteome but also exhibits functional activity with complex signaling pathways when stimulated with endogenous and synthetic HCA3R agonists.
Collapse
Affiliation(s)
- Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Wenyan Li
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Neele K Levin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | | | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
2
|
Wu Y, Dahlgren C, Forsman H, Sundqvist M. LTB 4 is converted into a potent human neutrophil NADPH oxidase activator via a receptor transactivation mechanism in which the BLT 1 receptor activates the free fatty acid receptor 2. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102680. [PMID: 40199055 DOI: 10.1016/j.plefa.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The endogenous neutrophil chemoattractant leukotriene B4 (LTB4) is a biased signalling agonist that potently increases the intracellular concentration of free calcium ions ([Ca2+]i), but alone is a weak activator of the neutrophil superoxide anion (O2-)-generating NADPH oxidase. However, in this study we show that an allosteric modulator of the free fatty acid 2 receptor (FFA2R) converts LTB4 into a potent NADPH oxidase activating agonist. While an allosteric modulation of FFA2R was required for LTB4 receptor 1 (BLT1R)-mediated activation of the NADPH oxidase, the LTB4-induced increase in [Ca2+]i was not affected by the modulator. Thus, the biased BLT1R signalling pattern was altered in the presence of the allosteric FFA2R modulator, being biased with a preference towards the signals that activate the NADPH oxidase relative to an increase in [Ca2+]i. Both BLT1R and FFA2R belong to the family of G protein-coupled receptors (GPCRs), and our results show that a communication between the activated BLT1R and the allosterically modulated FFA2Rs generates signals that induce NADPH oxidase activity. This is consistent with a previously described receptor transactivation (crosstalk) model whereby the function of one neutrophil GPCR can be regulated by receptor downstream signals generated by another GPCR. Furthermore, the finding that an allosteric FFA2R modulator sensitises not only the response induced by orthosteric FFA2R agonists but also the response induced by LTB4, violates the receptor restriction properties that normally define the selectivity of allosteric GPCR modulators.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
3
|
Clausen Lind A, De Castro Gomes D, Bisquert R, Mårtensson J, Sundqvist M, Forsman H, Dahlgren C, David F, Siewers V. Development of a yeast-based sensor platform for evaluation of ligands recognized by the human free fatty acid 2 receptor. FEMS Yeast Res 2025; 25:foaf001. [PMID: 39824656 PMCID: PMC11781196 DOI: 10.1093/femsyr/foaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases. While research aiming to identify ligands recognized by FFA2R for translational applications is ongoing, screening is complicated by the complex regulatory and cell-specific responses mediated by the receptor. To simplify screening towards identification of novel ligands, heterologous platforms are valuable tools that offer efficient identification of ligand activity in the absence of regulatory mechanisms. Here, we present a yeast-based sensor designed to evaluate G protein α i1-mediated FFA2R signaling, with an assay time of 3 h. We verify this platform towards the natural agonists, propionate and acetate, and show applicability towards evaluation of synthetic agonists, antagonists, and allosteric agonists. As such, we believe that the developed yeast strain constitutes a promising screening platform for effective evaluation of ligands acting on FFA2R.
Collapse
Affiliation(s)
- Andrea Clausen Lind
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Davi De Castro Gomes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Ricardo Bisquert
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Florian David
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Dahlgren C, Forsman H, Sundqvist M, Björkman L, Mårtensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol 2024; 116:1334-1351. [PMID: 39056275 DOI: 10.1093/jleuko/qiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
In human peripheral blood, the neutrophil granulocytes (neutrophils) are the most abundant white blood cells. These professional phagocytes are rapidly recruited from the bloodstream to inflamed tissues by chemotactic factors that signal danger. Neutrophils, which express many receptors that are members of the large family of G protein-coupled receptors (GPCRs), are critical for the elimination of pathogens and inflammatory insults, as well as for the resolution of inflammation leading to tissue repair. Danger signaling molecular patterns such as the N-formylated peptides that are formed during bacterial and mitochondrial protein synthesis and recognized by formyl peptide receptors (FPRs) and free fatty acids recognized by free fatty acid receptors (FFARs) regulate neutrophil functions. Short peptides and short-chain fatty acids activate FPR1 and FFA2R, respectively, while longer peptides and fatty acids activate FPR2 and GPR84, respectively. The activation profiles of these receptors include the release of reactive oxygen species (ROS) generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activation of the oxidase and the production of ROS are processes that are regulated by proinflammatory mediators, including tumor necrosis factor α and granulocyte/macrophage colony-stimulating factor. The receptors have signaling and functional similarities, although there are also important differences, not only between the two closely related neutrophil FPRs, but also between the FPRs and the FFARs. In neutrophils, these receptors never walk alone, and additional mechanistic insights into the regulation of the GPCRs and the novel regulatory mechanisms underlying the activation of NADPH oxidase advance our understanding of the role of receptor transactivation in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| |
Collapse
|
5
|
Khamzeh A, Dahlstrand Rudin A, Venkatakrishnan V, Stylianou M, Sanchez Klose FP, Urban CF, Björnsdottir H, Bylund J, Christenson K. High levels of short-chain fatty acids secreted by Candida albicans hyphae induce neutrophil chemotaxis via free fatty acid receptor 2. J Leukoc Biol 2024; 115:536-546. [PMID: 37992073 DOI: 10.1093/jleuko/qiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.
Collapse
Affiliation(s)
- Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammations Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
- Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 58 Gothenburg, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Felix P Sanchez Klose
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| |
Collapse
|
6
|
Lind S, Wu Y, Sundqvist M, Forsman H, Dahlgren C. An increase in the cytosolic concentration of free calcium ions activates the neutrophil NADPH-oxidase provided that the free fatty acid receptor 2 has been allosterically modulated. Cell Signal 2023; 107:110687. [PMID: 37105507 DOI: 10.1016/j.cellsig.2023.110687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Signals generated by free fatty acid receptor 2 (FFA2R) can activate the neutrophil NADPH-oxidase without involvement of any orthosteric FFA2R agonist. The initiating signals may be generated by P2Y2R, the receptor for ATP. An FFA2R specific allosteric modulator (PAM; Cmp58) was required for this response and used to investigate the mechanism by which signals generated by ATP/P2Y2R activate an FFA2R dependent process. The P2Y2R induced signal that together with the modulated FFA2R activates neutrophils, was generated downstream of the Gαq containing G protein coupled to P2Y2R. A rise in the cytosolic concentration of ionized calcium ([Ca2+]i) was hypothesized to be the important signal. The hypothesis gained support from the finding that the modulator transferred the neutrophils to a Ca2+sensitive state. The rise in [Ca2+]i induced by the Ca2+ specific ionophore ionomycin, activated the neutrophils provided that an allosteric modulator was bound to FFA2R. The activity of the superoxide generating NADPH-oxidase induced by ionomycin was rapidly terminated and the FFA2Rs could then no longer be activated by the FFA2R agonist propionate or by the signal generated by ATP/P2Y2R. The non-responding state of FFA2R was, however, revoked by a cross-activating allosteric FFA2R modulator. The [Ca2+]i mediated activation of neutrophils with their FFA2Rs allosterically modulated, represent a unique regulatory receptor crosstalk mechanism by which the activation potency of a G protein coupled receptor is controlled by a receptor-crosstalk signaling system operating from the cytosolic side of the plasma membrane.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
7
|
Dahlgren C, Lind S, Mårtensson J, Björkman L, Wu Y, Sundqvist M, Forsman H. G
protein coupled pattern recognition receptors expressed in neutrophils
: Recognition, activation/modulation, signaling and receptor regulated functions. Immunol Rev 2022; 314:69-92. [PMID: 36285739 DOI: 10.1111/imr.13151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| |
Collapse
|
8
|
Neag MA, Mitre AO, Catinean A, Buzoianu AD. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World J Gastroenterol 2021; 27:7446-7461. [PMID: 34887642 PMCID: PMC8613744 DOI: 10.3748/wjg.v27.i43.7446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a chronic damaging effect on the liver and its functions. Chronic liver disease can lead to even more severe and life-threatening conditions, such as liver cirrhosis and hepatocellular carcinoma. Recent years have uncovered an important interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B and C infections often cause alterations in the gut microbiota by lowering the levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota ability to boost the immune response. Treatments aimed at restoring the gut microbiota balance may provide a valuable addition to current practice therapies and may help limit the chronic changes observed in the liver of hepatitis B and C patients. This review aims to summarize the current knowledge on the anato-functional axis between the gut and liver and to highlight the influence that hepatitis B and C viruses have on the microbiota balance, as well as the influence of treatments aimed at restoring the gut microbiota on infected livers and disease progression.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400012, Romania
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400006, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| |
Collapse
|
9
|
Schlatterer K, Beck C, Schoppmeier U, Peschel A, Kretschmer D. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol 2021; 4:928. [PMID: 34330996 PMCID: PMC8324776 DOI: 10.1038/s42003-021-02427-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial sepsis is a major cause of mortality resulting from inadequate immune responses to systemic infection. Effective immunomodulatory approaches are urgently needed but it has remained elusive, which targets might be suitable for intervention. Increased expression of the G-protein-coupled receptor GPR43, which is known to govern intestinal responses to acetate, has been associated with sepsis patient survival but the mechanisms behind this observation have remained unclear. We show that elevated serum acetate concentrations prime neutrophils in a GPR43-dependent fashion, leading to enhanced neutrophil chemotaxis, oxidative burst, cytokine release and upregulation of phagocytic receptors. Consequently, acetate priming improved the capacity of human neutrophils to eliminate methicillin-resistant Staphylococcus aureus. Acetate administration increased mouse serum acetate concentrations and primed neutrophils. Notably, it rescued wild-type mice from severe S. aureus sepsis and reduced bacterial numbers in peripheral organs by several magnitudes. Acetate treatment improved the sepsis course even when applied several hours after onset of the infection, which recommends GPR43 as a potential target for sepsis therapy. Our study indicates that the severity of sepsis depends on transient neutrophil priming by appropriate blood acetate concentrations. Therapeutic interventions based on GPR43 stimulation could become valuable strategies for reducing sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Katja Schlatterer
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Christian Beck
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Ulrich Schoppmeier
- grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Dorothee Kretschmer
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| |
Collapse
|
10
|
Dahlstrand Rudin A, Khamzeh A, Venkatakrishnan V, Basic A, Christenson K, Bylund J. Short chain fatty acids released by Fusobacterium nucleatum are neutrophil chemoattractants acting via free fatty acid receptor 2 (FFAR2). Cell Microbiol 2021; 23:e13348. [PMID: 33913592 DOI: 10.1111/cmi.13348] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca2+ signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
12
|
Milligan G, Barki N, Tobin AB. Chemogenetic Approaches to Explore the Functions of Free Fatty Acid Receptor 2. Trends Pharmacol Sci 2021; 42:191-202. [PMID: 33495026 DOI: 10.1016/j.tips.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids are generated in large amounts by the intestinal microbiota. They activate both the closely related G protein-coupled receptors free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3) that are considered therapeutic targets in diseases of immuno-metabolism. Limited and species-selective small-molecule pharmacology has restricted our understanding of the distinct roles of these receptors. Replacement of mouse FFA2 with a designer receptor exclusively activated by designer drug form of human FFA2 (hFFA2-DREADD) has allowed definition of specific roles of FFA2 in pharmacological and physiological studies conducted both ex vivo and in vivo, whilst overlay of murine disease models offers opportunities for therapeutic validation prior to human studies. Similar approaches can potentially be used to define roles of other poorly characterised receptors.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Dahlstrand Rudin A, Khamzeh A, Venkatakrishnan V, Persson T, Gabl M, Savolainen O, Forsman H, Dahlgren C, Christenson K, Bylund J. Porphyromonas gingivalis Produce Neutrophil Specific Chemoattractants Including Short Chain Fatty Acids. Front Cell Infect Microbiol 2021; 10:620681. [PMID: 33542906 PMCID: PMC7851090 DOI: 10.3389/fcimb.2020.620681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Neutrophil migration from blood to tissue-residing microbes is governed by a series of chemoattractant gradients of both endogenous and microbial origin. Periodontal disease is characterized by neutrophil accumulation in the gingival pocket, recruited by the subgingival biofilm consisting mainly of gram-negative, anaerobic and proteolytic species such as Porphyromonas gingivalis. The fact that neutrophils are the dominating cell type in the gingival pocket suggests that neutrophil-specific chemoattractants are released by subgingival bacteria, but characterization of chemoattractants released by subgingival biofilm species remains incomplete. In the present study we characterized small (< 3 kDa) soluble chemoattractants released by growing P. gingivalis, and show that these are selective for neutrophils. Most neutrophil chemoattractant receptors are expressed also by mononuclear phagocytes, the free fatty acid receptor 2 (FFAR2) being an exception. In agreement with the selective neutrophil recruitment, the chemotactic activity found in P. gingivalis supernatants was mediated in part by a mixture of short chain fatty acids (SCFAs) that are recognized by FFAR2, and other leukocytes (including monocytes) did not respond to SCFA stimulation. Although SCFAs, produced by bacterial fermentation of dietary fiber in the gut, has previously been shown to utilize FFAR2, our data demonstrate that the pronounced proteolytic metabolism employed by P. gingivalis (and likely also other subgingival biofilm bacteria associated with periodontal diseases) may result in the generation of SCFAs that attract neutrophils to the gingival pocket. This finding highlights the interaction between SCFAs and FFAR2 in the context of P. gingivalis colonization during periodontal disease, but may also have implications for other inflammatory pathologies involving proteolytic bacteria.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tishana Persson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2020; 109:1105-1120. [PMID: 33040403 PMCID: PMC8246850 DOI: 10.1002/jlb.2hi0520-317r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The formyl peptide receptors FPR1 and FPR2 are abundantly expressed by neutrophils, in which they regulate proinflammatory tissue recruitment of inflammatory cells, the production of reactive oxygen species (ROS), and resolution of inflammatory reactions. The unique dual functionality of the FPRs makes them attractive targets to develop FPR‐based therapeutics as novel anti‐inflammatory treatments. The small compound RE‐04‐001 has earlier been identified as an inducer of ROS in differentiated HL60 cells but the precise target and the mechanism of action of the compound was has until now not been elucidated. In this study, we reveal that RE‐04‐001 specifically targets and activates FPR1, and the concentrations needed to activate the neutrophil NADPH‐oxidase was very low (EC50 ∼1 nM). RE‐04‐001 was also found to be a neutrophil chemoattractant, but when compared to the prototype FPR1 agonist N‐formyl‐Met‐Leu‐Phe (fMLF), the concentrations required were comparably high, suggesting that signaling downstream of the RE‐04‐001‐activated‐FPR1 is functionally selective. In addition, the RE‐04‐001‐induced response was strongly biased toward the PLC‐PIP2‐Ca2+ pathway and ERK1/2 activation but away from β‐arrestin recruitment. Compared to the peptide agonist fMLF, RE‐04‐001 is more resistant to inactivation by the MPO‐H2O2‐halide system. In summary, this study describes RE‐04‐001 as a novel small molecule agonist specific for FPR1, which displays a biased signaling profile that leads to a functional selective activating of human neutrophils. RE‐04‐001 is, therefore, a useful tool, not only for further mechanistic studies of the regulatory role of FPR1 in inflammation in vitro and in vivo, but also for developing FPR1‐specific drug therapeutics.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Olofsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Frei R, Nordlohne J, Hüser U, Hild S, Schmidt J, Eitner F, Grundmann M. Allosteric targeting of the FFA2 receptor (GPR43) restores responsiveness of desensitized human neutrophils. J Leukoc Biol 2020; 109:741-751. [PMID: 32803826 PMCID: PMC8048482 DOI: 10.1002/jlb.2a0720-432r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The G protein‐coupled free fatty acid receptor 2 (FFA2R) is highly expressed on neutrophils and was previously described to regulate neutrophil activation. Allosteric targeting of G protein‐coupled receptors (GPCRs) is increasingly explored to create distinct pharmacology compared to endogenous, orthosteric ligands. The consequence of allosteric versus orthosteric FFA2R activation for neutrophil response, however, is currently largely elusive. Here, different FFA2R desensitization profiles in human neutrophils following allosteric or orthosteric activation are reported. Using a set of neutrophil functional assays to measure calcium flux, pERK1/2, chemotaxis, cellular degranulation, and oxidative burst together with holistic and pathway‐unbiased whole cell sensing based on dynamic mass redistribution, it is found that the synthetic positive allosteric modulator agonist 4‐CMTB potently activates neutrophils and simultaneously alters FFA2R responsiveness toward the endogenous, orthosteric agonist propionic acid (C3) after homologous and heterologous receptor desensitization. Stimulation with C3 or the hierarchically superior chemokine receptor activator IL‐8 led to strong FFA2R desensitization and rendered neutrophils unresponsive toward repeated stimulation with C3. In contrast, stimulation with allosteric 4‐CMTB engaged a distinct composition of signaling pathways as compared to orthosteric receptor activation and was able to activate neutrophils that underwent homologous and heterologous desensitization with C3 and IL‐8, respectively. Moreover, allosteric FFA2R activation could re‐sensitize FFA2 toward the endogenous agonist C3 after homologous and heterologous desensitization. Given the fact that receptor desensitization is critical in neutrophils to sense and adapt to their current environment, these findings are expected to be useful for the discovery of novel pharmacological mechanisms to modulate neutrophil responsiveness therapeutically.
Collapse
Affiliation(s)
- Robert Frei
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Johannes Nordlohne
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Ulrike Hüser
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Seda Hild
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Johannes Schmidt
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Frank Eitner
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Manuel Grundmann
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| |
Collapse
|
16
|
Holdfeldt A, Lind S, Hesse C, Dahlgren C, Forsman H. The PAR4-derived pepducin P4Pal 10 lacks effect on neutrophil GPCRs that couple to Gαq for signaling but distinctly modulates function of the Gαi-coupled FPR2 and FFAR2. Biochem Pharmacol 2020; 180:114143. [PMID: 32653592 DOI: 10.1016/j.bcp.2020.114143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
A novel mechanism of action was described for the protease-activated receptor 4 (PAR4)-derived pepducin (P4Pal10), when it was shown to exhibit inhibitory efficacy towards G protein coupling to multiple Gαq-coupled receptors (Carr, R., 3rd et al., Mol. Pharmacol. 2016(89) 94). We could confirm that P4Pal10, similar to an earlier-characterized Gαq inhibitor (YM-254890), inhibited platelet aggregation induced by agonists for the Gαq-coupled receptors PAR1 and PAR4. Next, we applied P4Pal10 as a tool compound and investigated its modulatory effect on several Gαq- and Gαi-coupled GPCRs expressed by human neutrophils. P4Pal10 had, however, no inhibitory effects on signaling downstream of the Gαq-coupled receptors for ATP (P2Y2R) and PAF (PAFR). Instead, P4Pal10 inhibited signaling downstream the Gαi-coupled FPR2. The inhibition was not due to a direct effect on Gαi as the closely related FPR1 was unaffected. In addition, we found that the pepducin activated allosterically modulated short chain fatty acid receptor (FFAR2), a Gαi/Gαq coupled GPCR that is functionally expressed in neutrophils. Taken together, we show that pepducins are unique tool-compounds for mechanistic studies of GPCR signaling and modulation in neutrophils. The data presented add also lipopeptides into the known ligand recognition lists for the two pattern recognition receptors FPR2 and FFAR2, receptors that primarily sense formylated peptides and short free fatty acids, respectively, inflammatory mediators of microbial origin.
Collapse
Affiliation(s)
- André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camilla Hesse
- Department for Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. ACTA ACUST UNITED AC 2020; 16:1-9. [PMID: 32835130 PMCID: PMC7332907 DOI: 10.1016/j.coemr.2020.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FFA2 and FFA3 are receptors for short-chain fatty acids which are produced in prodigious amounts by fermentation of poorly digested carbohydrates by gut bacteria. Understanding the roles of these receptors in regulating enteroendocrine, metabolic and immune functions has developed with the production and use of novel pharmacological tools and animal models. A complex (patho)physiological scenario is now emerging in which strategic expression of FFA2 and FFA3 in key cell types and selective modulation of their signalling might regulate body weight management, energy homoeostasis and inflammatory disorders.
Collapse
Key Words
- ALDH1A2, aldehyde dehydrogenase 1 family member
- BAFF, B-cell activating factor
- CMTB, 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide
- DREADD, Designer Receptor Exclusively Activated by Designer Drug
- Enteroendocrine
- FFA2
- FFA3
- G protein–coupled receptors
- GLP-1, glucagon-like peptide 1
- GSIS, glucose-stimulated insulin secretion
- GTT, glucose tolerance test
- HFD, high-fat diet
- ILC3, type 3 innate lymphoid cell
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- Immune cells
- KO, knock-out
- PA, (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide
- PNS, peripheral nervous system
- PYY, peptide YY
- Pancreas
- SCA, small carboxylic acid
- SCFA, short-chain fatty acid
- SCG, superior cervical ganglion
- Short-chain fatty acids
Collapse
Affiliation(s)
- Daniele Bolognini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Domonkos Dedeo
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
18
|
Lipid mediators and asthma: Scope of therapeutics. Biochem Pharmacol 2020; 179:113925. [PMID: 32217103 DOI: 10.1016/j.bcp.2020.113925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Lipids and their mediators are known to play a pro-inflammatory role in several human diseases including asthma. The influence of leukotrienes and prostaglandins through arachidonate metabolism in asthma pathophysiology is well established and hence, prompted the way for therapeutic strategies targeting lipid metabolites. In addition, various types of fatty acids have been reported to play a diverse role in asthma. For instance, CD4+ T-lymphocytes differentiation towards T-effector (Teff) or T-regulatory (Tregs) cells seems to be controlled reciprocally by fatty acid metabolic pathways. Further, the dysregulated lipid status in obesity complicates the asthma manifestations suggesting the role of lipid metabolites particularly ω-6 fatty acids in the process. On the other hand, clinical and pre-clinical studies suggests the role of short chain fatty acids in curbing asthma through upregulation of T-regulatory cells or clearance of inflammatory cells through promoting apoptosis. Accordingly, the present review compiles various studies for comprehensive analysis of different types of lipid based metabolites in asthma manifestation. Finally, we have proposed certain strategies which may enhance the usefulness of lipid mediators for balanced immune response during asthma.
Collapse
|
19
|
Dahlgren C, Holdfeldt A, Lind S, Mårtensson J, Gabl M, Björkman L, Sundqvist M, Forsman H. Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions. ACS Pharmacol Transl Sci 2020; 3:203-220. [PMID: 32296763 DOI: 10.1021/acsptsci.0c00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| |
Collapse
|
20
|
Lind S, Holdfeldt A, Mårtensson J, Sundqvist M, Kenakin TP, Björkman L, Forsman H, Dahlgren C. Interdependent allosteric free fatty acid receptor 2 modulators synergistically induce functional selective activation and desensitization in neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118689. [PMID: 32092308 DOI: 10.1016/j.bbamcr.2020.118689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 01/06/2023]
Abstract
The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Rheumatology Unit, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Terry P Kenakin
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Rheumatology Unit, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
21
|
Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C. The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza A Virus Entry. J Virol 2020; 94:e01707-19. [PMID: 31694949 PMCID: PMC6955252 DOI: 10.1128/jvi.01707-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with β-arrestin1 and that β-arrestin1 interacted with the β2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either β-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the β-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-β-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qibing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shanyu Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junping Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjun Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Lind S, Sundqvist M, Holmdahl R, Dahlgren C, Forsman H, Olofsson P. Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949. Biochem Pharmacol 2019; 166:163-173. [DOI: 10.1016/j.bcp.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
23
|
Lind S, Holdfeldt A, Mårtensson J, Sundqvist M, Björkman L, Forsman H, Dahlgren C. Functional selective ATP receptor signaling controlled by the free fatty acid receptor 2 through a novel allosteric modulation mechanism. FASEB J 2019; 33:6887-6903. [PMID: 30808243 DOI: 10.1096/fj.201802309r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nonactivating allosteric modulator of free fatty acid receptor 2 (FFA2R, also called GPCR 43) turns both propionate (an orthosteric FFA2R agonist) and ATP (an agonist for the purinergic P2Y2 receptor), into potent activating ligands that trigger an assembly of the superoxide-generating neutrophil NADPH oxidase. The ATP-induced activation requires the participation of FFA2R, and the signaling is biased toward oxidase activation, leaving the ATP-induced rise in intracellular Ca2+ unaffected. No NADPH oxidase activity was induced by ATP when propionate replaced the allosteric modulator. Signaling downstream of propionate-activated FFA2Rs was insensitive to Gαq inhibition, but the crosstalk activation involving both FFA2R and P2Y2R relied on Gαq signaling. The receptor crosstalk, by which allosterically modulated FFA2Rs communicate with P2Y2Rs and generate NADPH oxidase activating signals downstream of Gαq, represent a novel mechanism by which GPCR activities can be regulated from inside the plasma membrane. Further, the finding that an allosteric FFA2R modulator sensitizes not only the response induced by orthosteric FFA2R agonists, but also the response induced by ATP (P2Y2R-specific agonist) and formyl peptide receptor-specific agonists, violates the receptor restriction characteristics normally defining the selectivity of allosteric GPCR modulators.-Lind, S., Holdfeldt, A., Mårtensson, J., Sundqvist, M., Björkman, L., Forsman, H., Dahlgren, C. Functional selective ATP receptor signaling controlled by the free fatty acid receptor 2 through a novel allosteric modulation mechanism.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Rheumatology Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Rheumatology Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|