1
|
Eid AH, S Zaki E, Sabry MO, El-Shiekh RA, Khalaf SS. Exploring the anti-anaphylaxis potential of natural products: A Review. Inflammopharmacology 2025:10.1007/s10787-025-01685-2. [PMID: 40106030 DOI: 10.1007/s10787-025-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Allergies are a common health issue affecting many people around the world, especially in developed countries. They occur when the immune system overreacts to substances that are usually harmless. Some common allergic conditions include asthma, sinus infections, skin rashes, food allergies, hay fever, severe allergic reactions, eczema, swelling, and reactions to medications or insect stings. The causes of these allergies are complex and often linked to genetics, which can lead to heightened immune responses known as atopy. Throughout history, plant extracts have been used for various purposes, including medicine and food. In addition, their bioactive compounds show a wide range of beneficial effects, such as reducing allergic reactions, fighting oxidative stress, mast cell stabilizers, and lowering inflammation, highlighting their potential for treating various health conditions. Flavonoids and phenolic compounds are commonly used in anaphylaxis for their potent anti-inflammatory action. This review aims to promote the use of natural products as potential treatments for anaphylaxis. In addition, the discovery of new drugs derived from natural sources holds significant promise for the management of anaphylaxis.
Collapse
Affiliation(s)
- Aya H Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Miral O Sabry
- Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
Abbas H, Badr G, Ramadan G, Abd-Elhalem SS. Camel Whey Protein and Baicalein Suppressed Mast Cell Degranulation in Mice Models of IgE- and Non-IgE-Mediated Anaphylaxes: Potential Mechanisms on Downstream Cell Signaling of Mast Cells. Immunol Invest 2024; 53:1330-1347. [PMID: 39258628 DOI: 10.1080/08820139.2024.2400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Novel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities. METHODS The current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored. RESULTS The results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer "sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally)," in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology. DISCUSSION The present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.
Collapse
Affiliation(s)
- Hend Abbas
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar Sobhy Abd-Elhalem
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
4
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
5
|
Jayasinghe AMK, Kirindage KGIS, Kim SH, Lee S, Kim KN, Kim EA, Heo SJ, Ahn G. Leaves and pseudostems extract of Curcuma longa attenuates immunoglobulin E/bovine serum albumin-stimulated bone marrow-derived cultured mast cell activation and passive cutaneous anaphylaxis in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117529. [PMID: 38042384 DOI: 10.1016/j.jep.2023.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of β-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of β-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1β, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
| | | | - Sun-Hyung Kim
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Seok Lee
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea.
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
6
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
7
|
Hicks NJ, Crozier RWE, MacNeil AJ. JNK signaling during IL-3-mediated differentiation contributes to the c-kit-potentiated allergic inflammatory capacity of mast cells. J Leukoc Biol 2023; 114:92-105. [PMID: 37141385 DOI: 10.1093/jleuko/qiad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
Mast cells are leukocytes that mediate various aspects of immunity and drive allergic hypersensitivity pathologies. Mast cells differentiate from hematopoietic progenitor cells in a manner that is largely IL-3 dependent. However, molecular mechanisms, including the signaling pathways that control this process, have yet to be thoroughly investigated. Here, we examine the role of the ubiquitous and critical mitogen-activated protein kinase signaling pathway due to its position downstream of the IL-3 receptor. Hematopoietic progenitor cells were harvested from the bone marrow of C57BL/6 mice and differentiated to bone marrow-derived mast cells in the presence of IL-3 and mitogen-activated protein kinase inhibitors. Inhibition of the JNK node of the mitogen-activated protein kinase pathway induced the most comprehensive changes to the mature mast cell phenotype. Bone marrow-derived mast cells differentiated during impaired JNK signaling expressed impaired c-kit levels on the mast cell surface, first detected at week 3 of differentiation. Following 1 wk of inhibitor withdrawal and subsequent stimulation of IgE-sensitized FcεRI receptors with allergen (TNP-BSA) and c-kit receptors with stem cell factor, JNK-inhibited bone marrow-derived mast cells exhibited impediments in early-phase mediator release through degranulation (80% of control), as well as late-phase secretion of CCL1, CCL2, CCL3, TNF, and IL-6. Experiments with dual stimulation conditions (TNP-BSA + stem cell factor or TNP-BSA alone) showed that impediments in mediator secretion were found to be mechanistically linked to reduced c-kit surface levels. This study is the first to implicate JNK activity in IL-3-mediated mast cell differentiation and also identifies development as a critical and functionally determinative period.
Collapse
Affiliation(s)
- Natalie J Hicks
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
8
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
9
|
Crozier RWE, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem 2023; 299:102867. [PMID: 36608933 PMCID: PMC10068559 DOI: 10.1016/j.jbc.2022.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Mast cells are essential regulators of inflammation most recognized for their central role in allergic inflammatory disorders. Signaling via the high-affinity immunoglobulin E (IgE) receptor, FcεRI, leads to rapid degranulation of preformed granules and the sustained release of newly-synthesized pro-inflammatory mediators. Our group recently established rosemary extract (RE) as a potent regulator of mast cell functions, attenuating MAPK and NF-κB signaling. Carnosic acid (CA)-a major polyphenolic constituent of RE-has been shown to exhibit anti-inflammatory effects in other immune cell models, but its role as a potential modulator of mast cell activation is undefined. Therefore, we sought here to determine the modulatory effects of CA in a mast cell model of allergic inflammation. We sensitized bone marrow-derived mast cells (BMMCs) with anti-trinitrophenyl (TNP) IgE and activated with allergen (TNP-BSA) under stem cell factor (SCF) potentiation, in addition to treatment with CA. Our results indicate that CA significantly inhibits allergen-induced early phase responses including Ca2+ mobilization, ROS production, and subsequent degranulation. We also show CA treatment reduced late phase responses, including the release of all cytokines and chemokines examined following IgE stimulation, and corresponding gene expression excepting that of CCL2. Importantly, we determined that CA mediates its inhibitory effects through modulation of tyrosine kinase Syk and downstream effectors TAK1 (Ser412) and Akt (Ser473) as well as NF-κB signaling, while phosphorylation of FcεRI (γ chain) and MAPK proteins remained unaltered. These novel findings establish CA as a potent modulator of mast cell activation, warranting further investigation as a putative anti-allergy therapeutic.
Collapse
Affiliation(s)
- Robert W E Crozier
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Michael Yousef
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Jeremia M Coish
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
10
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Pelvan E, Karaoğlu Ö, Önder Fırat E, Betül Kalyon K, Ros E, Alasalvar C. Immunomodulatory effects of selected medicinal herbs and their essential oils: A comprehensive review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Li G, Wu H, Sun L, Cheng K, Lv Z, Chen K, Qian F, Li Y. (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules 2022; 27:molecules27133985. [PMID: 35807237 PMCID: PMC9268635 DOI: 10.3390/molecules27133985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
(-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L., which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In IgE-mediated BMMCs, the levels of β-hexosaminidase (β-hex), histamine, and tumor necrosis factor (TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases (Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic dermatitis and other mast-cell-related diseases.
Collapse
Affiliation(s)
- Guangxia Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Huayan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Liqin Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Correspondence: (F.Q.); (Y.L.)
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Correspondence: (F.Q.); (Y.L.)
| |
Collapse
|
13
|
Bessa C, Francisco T, Dias R, Mateus N, Freitas VD, Pérez-Gregorio R. Use of Polyphenols as Modulators of Food Allergies. From Chemistry to Biological Implications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.623611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The multifactorial process of aging predisposes humans to infections and inflammatory disorders, thus affecting their quality of life and longevity. Given this reality, the need to increase the consumption of bioactive compounds, like dietary polyphenols emerges in our daily basis mostly due to their health related effects in slowing-down the incidence of chronic and degenerative diseases and even food allergy, which has been growing rapidly in prevalence currently affecting 5% of adults and 8% of children. Polyphenols embrace a large family of secondary metabolites from plant-derived foods and food wastes and are considerable of interest since they have attracted special attention over the years because of their reported anti-inflammatory and antimicrobial properties along with their high antioxidant capacity. These compounds are claimed as nutraceuticals with protective effect in offsetting oxidant species over-genesis in normal cells, and with the potential ability to stop or reverse oxidative stress-related diseases. Plant-derived foods represent a substantive portion of human diet containing a significant amount of structurally diverse polyphenols. There is a need to understand the polyphenolic composition of plant-derived foods mainly because of its chemistry, which discloses the bioactivity of a plant extract. However, the lack of standardized methods for analysis and other difficulties associated to the nature and distribution of plant polyphenols leads to a high variability of available data. Furthermore, there is still a gap in the understanding of polyphenols bioavailability and pharmacokinetics, which clearly difficult the settlement of the intake needed to observe health outcomes. Many efforts have been made to provide highly sensitive and selective analytical methods for the extraction (liquid-liquid; solid-liquid; supercritical-fluid), separation (spectrophotometric methods) and structural identification (chromatographic techniques, NMR spectroscopy, MS spectrometry) of phenolic and polyphenolic compounds present in these extracts. Liquid chromatography coupled to mass spectrometry (LC-MS) has been a fundamental technique in this area of research, not only for the determination of this family of compounds in food matrices, but also for the characterization and identification of new polyphenols classified with nutraceutical interest. This review summarizes the nature, distribution and main sources of polyphenols, analytical methods from extraction to characterization to further evaluate the health effects toward immune reactions to food.
Collapse
|
14
|
Phipps KR, Lozon D, Baldwin N. Genotoxicity and subchronic toxicity studies of supercritical carbon dioxide and acetone extracts of rosemary. Regul Toxicol Pharmacol 2020; 119:104826. [PMID: 33221424 DOI: 10.1016/j.yrtph.2020.104826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
Toxicology studies conducted with oil-soluble rosemary extracts to support authorization as a food additive (antioxidant) in the EU include an Ames test using a supercritical carbon dioxide extract (D74), a full 90-day study using D74 and an acetone extract (F62), and an investigative 90-day study with a 28-day recovery period (using D74 only). D74 was non-mutagenic in the Ames test. In the full 90-day study, where rats (20/sex/group) were either provided control diet or diets containing D74 (300, 600, or 2400 mg/kg) or F62 (3800 mg/kg), liver enlargement and hepatocellular hypertrophy were observed. To determine a mode of action and assess the reversibility of the hepatic effects, an investigative 90-day study was conducted using female rats (10/group receiving control diet or diet containing 2400 mg/kg D74). Liver enlargement was fully reversible after 28 days and microsomal enzyme analysis revealed reversible induction of cytochrome P450 enzymes (CYP2A1, CYP2A2, CYP2C11, CYP2E1, and CYP4A), demonstrating that the hepatic effects were adaptive and of no toxicological concern. Therefore, the highest dietary concentrations were established as the NOAELs. The investigative 90-day study NOAEL (providing 64 mg/kg bw/day carnosol and carnosic acid [the primary antioxidant components]) was used to establish a temporary ADI for rosemary extracts.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK.
| | - Dayna Lozon
- Intertek Health Sciences Inc, 2233 Argentia Road, Suite 201, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK
| |
Collapse
|