1
|
Gurel PS, Newman RG, Pearson S, Dreaden K, Wang C, Donatelli SS, Zhao Y, Chamoun J, Heiber JF. Self-assembling sequentially administered tumor targeted Split IL-12p35 and p40 subunits to improve the therapeutic index of systemically delivered IL-12 therapy for cancer. Cytokine 2025; 190:156912. [PMID: 40154091 DOI: 10.1016/j.cyto.2025.156912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
IL-12, also called IL-12p70, is a highly potent, proinflammatory heterodimeric cytokine that can mediate many beneficial anti-tumor effects. In preclinical studies, recombinant IL-12, as well as IL-12 gene therapies, have demonstrated notable anti-tumor results across various tumor types; however, IL-12 clinical benefit has been limited by its poor tolerability at potentially efficacious doses. We have developed a novel approach to mitigate the toxicity of IL-12 by engineering tumor-targeted split IL-12 that preferentially localizes IL-12 activity to the tumor microenvironment. The functionally inactive IL-12 subunits, p35 and p40, are separately fused to antibody fragments targeting a highly expressed tumor-associated antigen, uPAR. The goal of this strategy is to drive assembly and activity of the IL-12 heterodimer into the tumor site through sequential administration of the targeted subunits, reducing systemic exposure and thereby potentially reducing associated toxicities. We use in vitro activity assays along with in vivo pharmacokinetic and pharmacodynamic studies in mice and non-human primates to demonstrate that the split IL-12 anti-uPAR fusions are capable of assembly and activity in vivo. The targeted p35 and p40 subunits are capable of complexing to form IL-12p70 and inducing STAT4 phosphorylation when applied to cultured immune cells, indicating in vitro IL-12 activity. Furthermore, sequential administration of subunits in in vivo mouse models demonstrates rapid serum clearance of IL-12 while extending retention in the tumor. Finally, dosing in non-human primates shows molecules are functionally active in vivo. This is a unique strategy with great clinical promise to harness the therapeutic potential of IL-12 while potentially avoiding the toxicity associated with systemic delivery.
Collapse
Affiliation(s)
- P S Gurel
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA.
| | - R G Newman
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - S Pearson
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - K Dreaden
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - C Wang
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - S S Donatelli
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - Y Zhao
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - J Chamoun
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - J F Heiber
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| |
Collapse
|
2
|
Schwarz E, Savardekar H, Zelinskas S, Mouse A, Lapurga G, Lyberger J, Rivaldi A, Ringwalt EM, Miller KE, Yu L, Behbehani GK, Cripe TP, Carson WE. Trabectedin Enhances the Antitumor Effects of IL-12 in Triple-Negative Breast Cancer. Cancer Immunol Res 2025; 13:560-576. [PMID: 39777457 PMCID: PMC11962391 DOI: 10.1158/2326-6066.cir-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
IL-12 is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL-12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T-box transcription factor (Tbx21), the cytotoxic ligands TNF-related apoptosis-inducing ligand (TNFSF10), Fas ligand (FASLG), and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1). The combination of IL-12 and trabectedin increased NK-cell cytotoxicity and activation and production of IFN-γ, TNF-α, and granzyme B in the presence of human TNBC cells. Treatment of 4T1 and EMT6 tumor-bearing mice with IL-12 and trabectedin led to a significant reduction in tumor burden compared with single-agent controls and the highest levels of plasma IFN-γ, intratumoral CD8+ T cells, and conventional type 1 DC. MDSC and M2-like macrophages were significantly decreased with combination therapy. NK-cell depletion abrogated the effects of combination therapy, as did the elimination of CD8+ T cells. NK-cell depletion led to lower levels of the NK cell-derived chemokine CCL5 and the DC-derived chemokine CXCL10, higher tumor burden, and decreased intratumoral CD8+ T cells. IL-12 and trabectedin also significantly enhanced the response of TNBC to anti-PD-L1 therapy. These data suggest that MDSC depletion augments the ability of IL-12-activated NK cells to drive the infiltration of DC and CD8+ T cells into TNBC for an antitumor effect.
Collapse
Affiliation(s)
- Emily Schwarz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Himanshu Savardekar
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Abigail Mouse
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Justin Lyberger
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Adithe Rivaldi
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Emily M. Ringwalt
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
| | - Katherine E. Miller
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Gregory K. Behbehani
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Timothy P. Cripe
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Zhou M, Shen Z. Advanced progress in the genetic modification of the oncolytic HSV-1 virus. Front Oncol 2025; 14:1525940. [PMID: 39906660 PMCID: PMC11790444 DOI: 10.3389/fonc.2024.1525940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
The use of replication-competent viruses for selective tumor oncolysis while sparing normal cells marks a significant advancement in cancer treatment. HSV-1 presents several advantages that position it as a leading candidate for oncolytic virotherapies. Its large genome can accommodate insertions over 30 kb or deletions of multiple virulence genes without compromising lytic replication in tumor cells. Additionally, anti-herpes drugs can inhibit its replication during accidental infections. Importantly, HSV-1 does not integrate into the host genome and cause mutations. The HSV-1 genome can be modified through genetic engineering in two main ways: first, by reducing infectivity and toxicity to normal cells via limited replication and assembly, altered protein-virus receptor binding, and minimized immune evasion; second, by enhancing anticancer activity through disruption of tumor cell metabolism, induction of autophagy, improved immune recognition, and modification of the tumor microenvironment. In this mini-review, we systematically examine genetic modification strategies for oncolytic HSV-1 while highlighting advancements from these modifications. Certain genetic alterations have shown efficacy in improving clinical outcomes for HSV-1-based therapies. These modifications include silencing specific genes and inserting exogenous genes into the HSV-1 genome. The insertion of exogenous genes has increasingly been used to develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated with oncolytic virotherapy at the conclusion of this review. As more clinical trials explore newly engineered therapies, they are likely to yield breakthroughs and promote broader adoption for cancer treatment.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Cuesta N, Staniszewska AD, Moreno C, Punzón C, Fresno M. NF-κB-Inducing Kinase Is Essential for Effective c-Rel Transactivation and Binding to the Il12b Promoter in Macrophages. BIOLOGY 2025; 14:33. [PMID: 39857264 PMCID: PMC11760456 DOI: 10.3390/biology14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
This study investigates the role of NIK in activating specific inflammatory genes in macrophages, focusing on the effect of a mutation in NIK found in alymphoplasia (aly/aly) mice. Mouse peritoneal macrophages from aly/aly mice showed a severe defect in the production of some pro-inflammatory cytokines, such as IL-12. This effect seemed to take place at the transcriptional level, as shown by the reduced transcription of Il12b and Il12a in aly/aly macrophages after exposure to the TLR4 agonist LPS. Immunoprecipitation studies showed that the binding of NIK to c-Rel was not efficient in RAW 264.7 cells over-expressing the aly/aly mutation. In addition, the shuttling of c-Rel to the nucleus was shown to be impaired in aly/aly macrophages in response to LPS. When looking more specifically at the regulation of the Il12b promoter, we found that c-Rel bound to the NF-kB consensus sequence in macrophages from WT mice 1 hr. after LPS challenge, whereas in aly/aly macrophages, the transcription factor bound to the promoter was p65. These findings indicate that NIK is essential for efficient c-Rel activation and proper inflammatory responses. NIK dysfunction could lead to weakened immune responses, and targeting this pathway may help in developing therapies for immune-related conditions.
Collapse
Affiliation(s)
- Natalia Cuesta
- Department of Cell Biology and Histology, School of Medicine, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Anna D. Staniszewska
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Cristóbal Moreno
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Carmen Punzón
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Manuel Fresno
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| |
Collapse
|
5
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
6
|
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int J Mol Sci 2024; 25:7062. [PMID: 39000169 PMCID: PMC11241012 DOI: 10.3390/ijms25137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), the immune system relentlessly attacks intestinal cells, causing recurrent tissue damage over the lifetime of patients. The etiology of IBD is complex and multifactorial, involving environmental, microbiota, genetic, and immunological factors that alter the molecular basis of the organism. Among these, the microbiota and immune cells play pivotal roles; the microbiota generates antigens recognized by immune cells and antibodies, while autoantibodies target and attack the intestinal membrane, exacerbating inflammation and tissue damage. Given the altered molecular framework, the analysis of multiple molecular biomarkers in patients proves exceedingly valuable for diagnosing and prognosing IBD, including markers like C reactive protein and fecal calprotectin. Upon detection and classification of patients, specific treatments are administered, ranging from conventional drugs to new biological therapies, such as antibodies to neutralize inflammatory molecules like tumor necrosis factor (TNF) and integrin. This review delves into the molecular basis and targets, biomarkers, treatment options, monitoring techniques, and, ultimately, current challenges in IBD management.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Muñoz-Villafranca
- Department of Gastroenterology, University Hospital of Basurto, Avda Montevideo 18, 48013 Bilbao, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
7
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting K, Kamerer R, Bailey KL, Wittrup KD, Fan TM. Tumor-localized interleukin-2 and interleukin-12 combine with radiation therapy to safely potentiate regression of advanced malignant melanoma in pet dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579965. [PMID: 38405716 PMCID: PMC10888855 DOI: 10.1101/2024.02.12.579965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The clinical use of interleukin-2 and -12 cytokines against cancer is limited by their narrow therapeutic windows due to on-target, off-tumor activation of immune cells when delivered systemically. Engineering IL-2 and IL-12 to bind to extracellular matrix collagen allows these cytokines to be retained within tumors after intralesional injection, overcoming these clinical safety challenges. While this approach has potentiated responses in syngeneic mouse tumors without toxicity, the complex tumor-immune interactions in human cancers are difficult to recapitulate in mouse models of cancer. This has driven an increased role for comparative oncology clinical trials in companion (pet) dogs with spontaneous cancers that feature analogous tumor and immune biology to human cancers. Here, we report the results from a dose-escalation clinical trial of intratumoral collagen-binding IL-2 and IL-12 cytokines in pet dogs with malignant melanoma, observing encouraging local and regional responses to therapy that may suggest human clinical benefit with this approach.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kimberly Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
8
|
Schwarz E, Benner B, Yu L, Tounkara F, Carson WE. Analysis of Changes in Plasma Cytokine Levels in Response to IL12 Therapy in Three Clinical Trials. CANCER RESEARCH COMMUNICATIONS 2024; 4:81-91. [PMID: 38108458 PMCID: PMC10777814 DOI: 10.1158/2767-9764.crc-23-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The ability of IL12 to stimulate natural killer (NK) cell and T-cell antitumor activity makes it an attractive candidate for the immune therapy of cancer. Our group has demonstrated that IL12 enhances the NK cell response to antibody-coated tumor cells and conducted three clinical trials utilizing IL12 with mAbs (OSU-9968, OSU-0167, and OSU-11010). To better characterize IL12-induced immunity, plasma cytokine levels were measured in 21 patients from these trials with favorable and unfavorable responses. t-statistics and linear modeling were used to test for differences within and between response groups by examining levels at baseline and post-IL12 administration. Patients exhibited significant increases in 11 cytokines post-IL12 administration when analyzed collectively. However, several cytokines were differentially induced by IL12 depending on response. GMCSF was significantly increased in complete/partially responding patients, while stable disease patients had significant increases in IL10 and decreases in VEGF-C. Patients who experienced progressive disease had significant increases in CCL3, CCL4, IL18, TNFα, CXCL10, CCL8, CCL2, IL6, and IFNγ. The increases in CCL3, CCL4, and IL6 in progressive disease patients were significantly higher than in clinically benefitting patients and most prominent within the first two cycles of IL12 therapy. This correlative pilot study has identified changes that occur in levels of circulating cytokines following IL12 administration to patients with cancer, but this report must be viewed as exploratory in nature. It is meant to spark further inquiry into the topic via the analysis of additional cohorts of patients with similar characteristics who have received IL12 in a uniform fashion. SIGNIFICANCE IL12 activates immune cells and is used to treat cancer. The profile of circulating cytokines was measured in an exploratory fashion in patients with cancer that received IL12 in combination with mAbs. This correlative pilot study could serve as the basis for additional studies of IL12 effects on the production of immune cytokines.
Collapse
Affiliation(s)
- Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Fode Tounkara
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Wang C, Wang J, Chen S, Li K, Wan S, Yang L. COL10A1 as a Prognostic Biomarker in Association with Immune Infiltration in Prostate Cancer. Curr Cancer Drug Targets 2024; 24:340-353. [PMID: 37592784 DOI: 10.2174/1568009623666230817101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/19/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The collagen type X alpha 1 (COL10A1) has recently been found to play an important role in the development and progression of cancer. However, the link between COL10A1 and the tumor immune microenvironment remains understood scantily. METHODS In the current study, the pan-cancer data of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to investigate the expression mode, the clinical prognostic and diagnostic value of COL10A1 in different tumors. We used TCGA data to assess the correlations between COL10A1 and clinical symptoms of prostate cancer. The R packages "edgR" and "clusterProfiler" were used for differential expression gene and enrichment analysis of COL10A1. Immunohistochemistry was further employed to corroborate the expression of COL10A1 gene in prostate cancer. After that, we used TIMER to evaluate the pertinence of COL10A1 expression to immune infiltration level in prostate cancer. RESULTS On the whole, COL10A1 was expressed at significantly higher levels in a variety of tumor tissues than in the corresponding normal tissues. Besides, significant correlations with tumor prognosis and relative exactitude in predicting tumors show that COL10A1 may be a probable prognostic and diagnostic biomarker of prostate cancer. In addition, the evidence indicates a significant correlation between COL10A1 and clinical symptoms of prostate cancer. Furthermore, the main molecular functions of COL10A1 included humoral immune response, complement activation, immunoglobulin, regulation of complement activation, and regulation of humoral immune response. Finally, we found that COL10A1 expression is positively correlated with enhanced macrophage and M2 macrophage infiltration in prostate cancer. CONCLUSION The study indicates that COL10A1 might participate in M2 macrophage polarization in prostate cancer. COL10A1 might be an innovative biomarker to evaluate tumor microenvironment immune cell infiltration and prognosis in prostate cancer.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Jirong Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Siyu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
10
|
Verstockt B, Salas A, Sands BE, Abraham C, Leibovitzh H, Neurath MF, Vande Casteele N. IL-12 and IL-23 pathway inhibition in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023; 20:433-446. [PMID: 37069321 PMCID: PMC10958371 DOI: 10.1038/s41575-023-00768-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-12 (IL-12) and interleukin-23 (IL-23), which belong to the IL-12 family of cytokines, have a key role in intestinal homeostasis and inflammation and are implicated in the pathogenesis of inflammatory bowel disease. Upon their secretion by antigen-presenting cells, they exert both pro-inflammatory and anti-inflammatory receptor-mediated effects. An increased understanding of these biological effects, particularly the pro-inflammatory effects mediated by IL-12 and IL-23, has led to the development of monoclonal antibodies that target a subunit common to IL-12 and IL-23 (p40; targeted by ustekinumab and briakinumab), or the IL-23-specific subunit (p19; targeted by risankizumab, guselkumab, brazikumab and mirikizumab). This Review provides a summary of the biology of the IL-12 family cytokines IL-12 and IL-23, discusses the role of these cytokines in intestinal homeostasis and inflammation, and highlights IL-12- and IL-23-directed drug development for the treatment of Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Bram Verstockt
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clara Abraham
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Haim Leibovitzh
- Zane Cohen Centre for Digestive Diseases, Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Markus F Neurath
- Department of Medicine 1, University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
11
|
Stinson JA, Sheen A, Momin N, Hampel J, Bernstein R, Kamerer R, Fadl-Alla B, Samuelson J, Fink E, Fan TM, Wittrup KD. Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram the Tumor Microenvironment in Canine Soft-Tissue Sarcomas. Clin Cancer Res 2023; 29:2110-2122. [PMID: 37014656 PMCID: PMC10239368 DOI: 10.1158/1078-0432.ccr-23-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Cytokine therapies such as IL2 and IL12 suffer from impractically small therapeutic windows driven by their on-target, off-tumor activity, limiting their clinical potential despite potent antitumor effects. We previously engineered cytokines that bind and anchor to tumor collagen following intratumoral injection, and sought to test their safety and biomarker activity in spontaneous canine soft-tissue sarcomas (STS). EXPERIMENTAL DESIGN Collagen-binding cytokines were canine-ized to minimize immunogenicity and were used in a rapid dose-escalation study in healthy beagles to identify a maximum tolerated dose. Ten client-owned pet dogs with STS were then enrolled into trial, receiving cytokines at different intervals prior to surgical tumor excision. Tumor tissue was analyzed through IHC and NanoString RNA profiling for dynamic changes within treated tumors. Archived, untreated STS samples were analyzed in parallel as controls. RESULTS Intratumorally administered collagen-binding IL2 and IL12 were well tolerated by STS-bearing dogs, with only Grade 1/2 adverse events observed (mild fever, thrombocytopenia, neutropenia). IHC revealed enhanced T-cell infiltrates, corroborated by an enhancement in gene expression associated with cytotoxic immune function. We found concordant increases in expression of counter-regulatory genes that we hypothesize would contribute to a transient antitumor effect, and confirmed in mouse models that combination therapy to inhibit this counter-regulation can improve responses to cytokine therapy. CONCLUSIONS These results support the safety and activity of intratumorally delivered, collagen-anchoring cytokines for inflammatory polarization of the canine STS tumor microenvironment. We are further evaluating the efficacy of this approach in additional canine cancers, including oral malignant melanoma.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Bernstein
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bahaa Fadl-Alla
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Samuelson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, Urbana, IL, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|