1
|
Corvo C, Mendez-David I, Goutal S, Saba W, Bottlaender M, Caillé F, Hen R, Colle R, Corruble E, Tournier N, Leroy C, David DJ. Synaptic Vesicle 2A (SV2A) Positron Emission Tomography (PET) Imaging as a Marker of Therapeutic Response in a Mouse Model of Depression. ACS Pharmacol Transl Sci 2025; 8:339-345. [PMID: 39974650 PMCID: PMC11833719 DOI: 10.1021/acsptsci.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
In this preclinical pilot study, we used [11C]UCB-J PET imaging to monitor the synaptic modulation in depression and after fluoxetine. PET imaging was performed in a validated mouse model of depression/anxiety (CORT model), and the effect of 5-week treatment with fluoxetine was tested. Depression/anxiety phenotype and antidepressant action of fluoxetine were confirmed using the novelty-suppressed feeding test, previously validated in the CORT model. PET data showed significant decreases of volume of distribution (V T) of [11C]UCB-J in most brain regions of CORT mice compared with controls. After 5 weeks of fluoxetine, a trend toward restoration of V T values to control levels was observed, although it reached significance only in the olfactory bulb. These preliminary data support the use of [11C]UCB-J PET imaging and the CORT model to study the synaptic modulation of antidepressants. It provides excellent translational opportunities to study the relationship between synaptic plasticity and the clinical efficacy of antidepressants.
Collapse
Affiliation(s)
- Cassandre Corvo
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Indira Mendez-David
- Université
Paris-Saclay, Centre de recherche en Epidémiologie
et Santé des Populations (CESP-Inserm), UMR 1018, Team Moods, Orsay 91400, France
| | - Sébastien Goutal
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Wadad Saba
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Michel Bottlaender
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Fabien Caillé
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Rene Hen
- Department
of Psychiatry, Columbia University, New York, New York 10027, United States
- Division
of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10019, United States
| | - Romain Colle
- Université
Paris-Saclay, Centre de recherche en Epidémiologie
et Santé des Populations (CESP-Inserm), UMR 1018, Team Moods, Orsay 91400, France
| | - Emmanuelle Corruble
- Université
Paris-Saclay, Centre de recherche en Epidémiologie
et Santé des Populations (CESP-Inserm), UMR 1018, Team Moods, Orsay 91400, France
| | - Nicolas Tournier
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Claire Leroy
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale (BioMaps), Service Hospitalier Frédéric
Joliot, 4 place du général
Leclerc, Orsay 91401, France
| | - Denis J. David
- Université
Paris-Saclay, Centre de recherche en Epidémiologie
et Santé des Populations (CESP-Inserm), UMR 1018, Team Moods, Orsay 91400, France
| |
Collapse
|
2
|
Whiteside DJ, Holland N, Tsvetanov KA, Mak E, Malpetti M, Savulich G, Jones PS, Naessens M, Rouse MA, Fryer TD, Hong YT, Aigbirhio FI, Mulroy E, Bhatia KP, Rittman T, O'Brien JT, Rowe JB. Synaptic density affects clinical severity via network dysfunction in syndromes associated with frontotemporal lobar degeneration. Nat Commun 2023; 14:8458. [PMID: 38114493 PMCID: PMC10730886 DOI: 10.1038/s41467-023-44307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
There is extensive synaptic loss from frontotemporal lobar degeneration, in preclinical models and human in vivo and post mortem studies. Understanding the consequences of synaptic loss for network function is important to support translational models and guide future therapeutic strategies. To examine this relationship, we recruited 55 participants with syndromes associated with frontotemporal lobar degeneration and 24 healthy controls. We measured synaptic density with positron emission tomography using the radioligand [11C]UCB-J, which binds to the presynaptic vesicle glycoprotein SV2A, neurite dispersion with diffusion magnetic resonance imaging, and network function with task-free magnetic resonance imaging functional connectivity. Synaptic density and neurite dispersion in patients was associated with reduced connectivity beyond atrophy. Functional connectivity moderated the relationship between synaptic density and clinical severity. Our findings confirm the importance of synaptic loss in frontotemporal lobar degeneration syndromes, and the resulting effect on behaviour as a function of abnormal connectivity.
Collapse
Affiliation(s)
- David J Whiteside
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kamen A Tsvetanov
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michelle Naessens
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Matthew A Rouse
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Eoin Mulroy
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John T O'Brien
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Myburgh PJ, Sai KKS. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process. ACS Pharmacol Transl Sci 2023; 6:1616-1631. [PMID: 37974626 PMCID: PMC10644505 DOI: 10.1021/acsptsci.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Introduction - Several 11C-tracers have demonstrated high potential in early diagnostic PET imaging applications of neurodegenerative diseases including Alzheimer's and Parkinson's disease. These radiotracers often track critical biomarkers in disease pathogenesis such as tau fibrils ([11C]PBB3) or β-amyloid plaques ([11C]PiB) associated with such diseases. Purpose - The short review aims to serve as a guideline in the future development of radiotracers for students, postdocs and/or new radiochemists who will be synthesizing clinical grade or novel research 11C-tracers, including knowledge of regulatory requirements. We aim to bridge the gap between novel and established 11C-tracer quality control (QC) processes through exploring the design process and regulatory requirements for 11C-pharmaceuticals. Methods - A literature survey was undertaken to identify articles with a detailed description of the QC methodology and characterization for each of the sections of the review. Overview - First a general summary of 11C-tracer production was presented; this was used to establish possible places for contamination or assurances for a sterile final product. The key mandated QC analyses for clinical use were then discussed. Further, we assessed the QC methods used for established 11C-tracers and then reviewed the routine QC tests for preclinical translational and validation studies. Therefore, both mandated QC methods for clinical and preclinical animal studies were reviewed. Last, some examples of optimization and automation were reviewed, and implications of the QC practices associated with such procedures were considered. Conclusion - All of the common QC parameters associated with 11C-tracers under clinical and preclinical settings (along with a few exceptions) were discussed in detail. While it is important to establish standard, peer-reviewed QC testing protocols for a novel 11C-tracer entering the clinical umbrella, equal importance is needed on preclinical applications to address credibility and repeatability for the study.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| | - Kiran Kumar Solingapuram Sai
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
- Department
of Radiology, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
4
|
Oxidation-Cyclisation of Biphenyl Thioethers to Dibenzothiophenium Salts for Ultrarapid 18F-Labelling of PET Tracers. Int J Mol Sci 2022; 23:ijms232415481. [PMID: 36555122 PMCID: PMC9779140 DOI: 10.3390/ijms232415481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
18F-labelled radiotracers are in high demand and play an important role for diagnostic imaging with positron emission tomography (PET). Challenges associated with the synthesis of the labelling precursors and the incorporation of [18F]fluoride with practical activity yields at batch scale are the main limitations for the development of new 18F-PET tracers. Herein, we report a high-yielding and robust synthetic method to access naked dibenzothiophenium salt precursors of complex PET tracers and their labelling with [18F]fluoride. C-S cross-coupling of biphenyl-2-thioacetate with aryl halides followed by sequential oxidation-cyclisation of the corresponding thioethers gives dibenzothiophenium salts in good to excellent yields. Labelling of neutral and electron-deficient substrates with [18F]fluoride is ultrarapid and occurs under mild conditions (1 min at 90 °C) with high activity yields. The method enables facile synthesis of complex and sensitive radiotracers, as exemplified by radiofluorination of three clinically relevant PET tracers [18F]UCB-J, [18F]AldoView and [18F]FNDP, and can accelerate the development and clinical translation of new 18F-radiopharmaceuticals.
Collapse
|
5
|
Luppi AI, Mediano PAM, Rosas FE, Holland N, Fryer TD, O'Brien JT, Rowe JB, Menon DK, Bor D, Stamatakis EA. A synergistic core for human brain evolution and cognition. Nat Neurosci 2022; 25:771-782. [PMID: 35618951 PMCID: PMC7614771 DOI: 10.1038/s41593-022-01070-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
How does the organization of neural information processing enable humans' sophisticated cognition? Here we decompose functional interactions between brain regions into synergistic and redundant components, revealing their distinct information-processing roles. Combining functional and structural neuroimaging with meta-analytic results, we demonstrate that redundant interactions are predominantly associated with structurally coupled, modular sensorimotor processing. Synergistic interactions instead support integrative processes and complex cognition across higher-order brain networks. The human brain leverages synergistic information to a greater extent than nonhuman primates, with high-synergy association cortices exhibiting the highest degree of evolutionary cortical expansion. Synaptic density mapping from positron emission tomography and convergent molecular and metabolic evidence demonstrate that synergistic interactions are supported by receptor diversity and human-accelerated genes underpinning synaptic function. This information-resolved approach provides analytic tools to disentangle information integration from coupling, enabling richer, more accurate interpretations of functional connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off between robustness and integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Center for Complexity Science, Imperial College London, London, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Rokka J, Nordeman P, Roslin S, Eriksson J. A comparative study on Suzuki-type 11 C-methylation of aromatic organoboranes performed in two reaction media. J Labelled Comp Radiopharm 2021; 64:447-455. [PMID: 34250640 DOI: 10.1002/jlcr.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/07/2022]
Abstract
The Suzuki-type cross coupling reaction is a palladium-mediated multistep reaction that has been used to synthesize several 11 C-labeled tracers for PET. However, the impact of the selected organoborane reagent and reaction medium on the radiochemical yield (RCY) has not been thoroughly investigated. To bridge this gap, we studied the synthesis of 1-[11 C]methylnaphthalene using four different organoborane precursors in reactions performed in DMF/water and THF/water. In the synthesis of 1-[11 C]methylnaphthalene, the best radiochemical yields (RCYs), approximately 50%, were obtained with boronic acid and pinacol ester precursors, whereas less than 4% RCY was obtained when performing the reaction with the N-methylimidodiacetic acid boronic ester (MIDA ester) precursor. 1-[11 C]methylnaphthalene was obtained in higher yields in almost all syntheses performed in THF/water as compared to DMF/water. This observation was in line with previously reported results for [11 C]UCB-J, a tracer for the synaptic vesicle glycoprotein 2A (SV2A) receptor, that also was obtained in higher RCY when synthesized in THF/water. The same trend was observed with [11 C]cetrozole, where the RCY was more than doubled in THF/water compared to the previously published synthesis performed in DMF. These results suggest that THF/water could be the preferred reaction medium when producing PET tracers via the Suzuki-type coupling reaction.
Collapse
Affiliation(s)
- Johanna Rokka
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Patric Nordeman
- Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Sara Roslin
- Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
8
|
Cawthorne C, Maguire P, Mercier J, Sciberras D, Serdons K, Bormans G, de Hoon J, Van Laere K, Koole M. Human biodistribution and dosimetry of [ 11C]-UCB-J, a PET radiotracer for imaging synaptic density. EJNMMI Phys 2021; 8:37. [PMID: 33891195 PMCID: PMC8065069 DOI: 10.1186/s40658-021-00384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
RATIONALE [11C]-UCB-J is an emerging tool for the noninvasive measurement of synaptic vesicle density in vivo. Here, we report human biodistribution and dosimetry estimates derived from sequential whole-body PET using two versions of the OLINDA dosimetry program. METHODS Sequential whole-body PET scans were performed in 3 healthy subjects for 2 h after injection of 254 ± 77 MBq [11C]-UCB-J. Volumes of interest were drawn over relevant source organs to generate time-activity curves and calculate time-integrated activity coefficients, with effective dose coefficients calculated using OLINDA 2.1 and compared to values derived from OLINDA 1.1 and those recently reported in the literature. RESULTS [11C]-UCB-J administration was safe and showed mixed renal and hepatobiliary clearance, with largest organ absorbed dose coefficients for the urinary bladder wall and small intestine (21.7 and 23.5 μGy/MBq, respectively). The average (±SD) effective dose coefficient was 5.4 ± 0.7 and 5.1 ± 0.8 μSv/MBq for OLINDA versions 1.1 and 2.1 respectively. Doses were lower than previously reported in the literature using either software version. CONCLUSIONS A single IV administration of 370 MBq [11C]-UCB-J corresponds to an effective dose of less than 2.0 mSv, enabling multiple PET examinations to be carried out in the same subject. TRIAL REGISTRATION EudraCT number: 2016-001190-32. Registered 16 March 2016, no URL available for phase 1 trials.
Collapse
Affiliation(s)
- Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | | | - Kim Serdons
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Nicastro N, Holland N, Savulich G, Carter SF, Mak E, Hong YT, Milicevic Sephton S, Fryer TD, Aigbirhio FI, Rowe JB, O'Brien JT. 11C-UCB-J synaptic PET and multimodal imaging in dementia with Lewy bodies. Eur J Hybrid Imaging 2020; 4:25. [PMID: 33381679 PMCID: PMC7752786 DOI: 10.1186/s41824-020-00093-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Dementia with Lewy bodies (DLB) is a common cause of dementia, but atrophy is mild compared to Alzheimer’s disease. We propose that DLB is associated instead with severe synaptic loss, and we test this hypothesis in vivo using positron emission tomography (PET) imaging of 11C-UCB-J, a ligand for presynaptic vesicle protein 2A (SV2A), a vesicle membrane protein ubiquitously expressed in synapses. Methods We performed 11C-UCB-J PET in two DLB patients (an amyloid-negative male and an amyloid-positive female in their 70s) and 10 similarly aged healthy controls. The DLB subjects also underwent PET imaging of amyloid (11C-PiB) and tau (18F-AV-1451). 11C-UCB-J binding was quantified using non-displaceable binding potential (BPND) determined from dynamic imaging. Changes in 11C-UCB-J binding were correlated with MRI regional brain volume, 11C-PiB uptake and 18F-AV-1451 binding. Results Compared to controls, both patients had decreased 11C-UCB-J binding, especially in parietal and occipital regions (FDR-corrected p < 0.05). There were no significant correlations across regions between 11C-UCB-J binding and grey matter, tau (18F-AV1451) or amyloid (11C-PiB) in either patient. Conclusions Quantitative imaging of in vivo synaptic density in DLB is a promising approach to understanding the mechanisms of DLB, over and above changes in grey matter volume and concurrent amyloid/tau deposition. Supplementary Information The online version contains supplementary material available at 10.1186/s41824-020-00093-9.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, 4 rue G. Perret-Gentil, 1205 Geneva, Switzerland
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Stephen F Carter
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | | | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Holland N, Jones PS, Savulich G, Wiggins JK, Hong YT, Fryer TD, Manavaki R, Sephton SM, Boros I, Malpetti M, Hezemans FH, Aigbirhio FI, Coles JP, O’Brien J, Rowe JB. Synaptic Loss in Primary Tauopathies Revealed by [ 11 C]UCB-J Positron Emission Tomography. Mov Disord 2020; 35:1834-1842. [PMID: 32652635 PMCID: PMC7611123 DOI: 10.1002/mds.28188] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge
| | - P. Simon Jones
- Department of Clinical Neurosciences, University of Cambridge
| | | | | | - Young T. Hong
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Tim D. Fryer
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | | | - Selena Milicevic Sephton
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Istvan Boros
- Department of Clinical Neurosciences, University of Cambridge
- Wolfson Brain Imaging Centre, University of Cambridge
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge
| | - Frank H. Hezemans
- Department of Clinical Neurosciences, University of Cambridge
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge
| | | | - Jonathan P. Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John O’Brien
- Department of Psychiatry, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
11
|
Becker G, Dammicco S, Bahri MA, Salmon E. The Rise of Synaptic Density PET Imaging. Molecules 2020; 25:molecules25102303. [PMID: 32422902 PMCID: PMC7288098 DOI: 10.3390/molecules25102303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many neurological disorders are related to synaptic loss or pathologies. Before the boom of positrons emission tomography (PET) imaging of synapses, synaptic quantification could only be achieved in vitro on brain samples after autopsy or surgical resections. Until the mid-2010s, electron microscopy and immunohistochemical labelling of synaptic proteins were the gold-standard methods for such analyses. Over the last decade, several PET radiotracers for the synaptic vesicle 2A protein have been developed to achieve in vivo synapses visualization and quantification. Different strategies were used, namely radiolabelling with either 11C or 18F, preclinical development in rodent and non-human primates, and binding quantification with different kinetic modelling methods. This review provides an overview of these PET tracers and underlines their perspectives and limitations by focusing on radiochemical aspects, as well as preclinical proof-of-concept and the main clinical outcomes described so far.
Collapse
|
12
|
Milicevic Sephton S, Miklovicz T, Russell JJ, Doke A, Li L, Boros I, Aigbirhio FI. Automated radiosynthesis of [ 11 C]UCB-J for imaging synaptic density by positron emission tomography. J Labelled Comp Radiopharm 2020; 63:151-158. [PMID: 32027052 PMCID: PMC7155065 DOI: 10.1002/jlcr.3828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/20/2023]
Abstract
An automated radiosynthesis of carbon-11 positron emission tomography radiotracer [11 C]UCB-J for imaging the synaptic density biomarker synaptic vesicle glycoprotein SV2A was established using Synthra RNPlus synthesizer. Commercially available trifluoroborate UCB-J analogue was used as a radiolabelling precursor, and the desired radiolabelled product was isolated in 11 ± 2% (n = 7) nondecay corrected radiochemical yield and formulated as a 10% EtOH solution in saline with molar activities of 20 to 100 GBq/μmol. The method was based upon the palladium(0)-mediated Suzuki cross-coupling reaction and [11 C]CH3 I as a radiolabelling synthon. The isolated product was cGMP compliant as demonstrated by the results of quality control analysis.
Collapse
Affiliation(s)
- Selena Milicevic Sephton
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Tunde Miklovicz
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
- University of Debrecen, Faculty of Medicine Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine H‐4032 Nagyerdei krt. 98University of DebrecenDebrecenHungary
| | - Joseph J. Russell
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Aniruddha Doke
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Lei Li
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Istvan Boros
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Franklin I. Aigbirhio
- Radiopharmaceutical Unit, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|