1
|
Plotkin LI, Bruzzaniti A, Pianeta R. Sexual Dimorphism in the Musculoskeletal System: Sex Hormones and Beyond. J Endocr Soc 2024; 8:bvae153. [PMID: 39309123 PMCID: PMC11413583 DOI: 10.1210/jendso/bvae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 09/25/2024] Open
Abstract
Mounting evidence indicates that whereas some fundamental aspects of bone cell differentiation and function are similar in females and males, there is a clear contribution of sex/gender on the effects of signaling molecules on bone mass and strength and, consequently, on the effects of pharmacologic approaches to treat skeletal disorders. However, until recently, most studies were designed and performed using only 1 sex, resulting in a scarcity of published information on sexual dimorphism of the musculoskeletal system, including the mandible/masticatory muscles and the axial and appendicular bones and skeletal muscles. Further, it is now recognized that scientific rigor requires the study of both males and females. Therefore, there is an increasing need to understand the molecular and cellular basis for the differential outcomes of genetic manipulations and therapeutic agent administration depending on the sex of the experimental animals. Studies have shown higher muscle mass, cancellous bone mass, and long bone width in males compared with females as well as different traits in the pelvis and the skull, which are usually used for gender identification in forensic anthropology. Yet, most reports focus on the role of sex hormones, in particular, the consequences of estrogen deficiency with menopause in humans and in ovariectomized animal models. In addition, emerging data is starting to unveil the effects of gender-affirming hormonal therapy on the musculoskeletal system. We summarize here the current knowledge on the sex/gender-dependent phenotypic characteristics of the bone and skeletal muscles in humans and rodents, highlighting studies in which side by side comparisons were made.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202-5120, USA
| | - Roquelina Pianeta
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
2
|
Ağaç DK, Oktay E, Onuk B, Kabak M, Gündemir O. Shape variation in cranium, mandible and teeth in selected mouse strains. Anat Histol Embryol 2024; 53:e13064. [PMID: 38841825 DOI: 10.1111/ahe.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
There are different strains of laboratory mouse used in many different fields. These strains differ anatomically. In order to determine these anatomical differences, shape analysis was conducted according to species. CD-1, C57bl/6 and Balb-c strains were preferred to study these differences. Forty-eight adult mouse strains belonging to these strains were utilized. The bones were photographed and geometric morphometry was applied to these photographs. Principal Component Analysis was applied to determine shape variations. In Principal component 1 for cranium, CD-1 and C57bl/6 strain groups showed different shape variations, while Balb-c strain group showed similar shape variations to the other strain groups. Principal Component 1 for the mandible separated the CD-1 and C57bl/6 strain groups in terms of shape variation. Principal Component 2 explained most of the variation between the C57bl/6 and CD-1 lineage groups. In PC1 for molars, the CD-1 group showed a different shape variation from the other groups. Mahalanobis distances and Procrustes distances were measured using Canonical variance analysis to explain the differences between the lineage groups. These measurements were statistically significant. For cranium, in canonical variate 1, CD-1 group of mouse and Balb-c group of mouse were separated from each other. In canonical variate 2, C57bl/6 group of mouse were separated from the other groups. For mandible, Balb-c group of mouse in canonical variate 1 and CD-1 group of mouse in canonical variate 2 were separated from the other groups. For molars, CD-1 group of mouse in canonical variate 1 and Balb-c group of mouse in canonical variate 2 were separated from the other groups. It was thought that these anatomical differences could be caused by genotypic factors as well as dietary differences and many different habits that would affect the way their muscles work.
Collapse
Affiliation(s)
- Duygu Küçük Ağaç
- Department of Veterinary, Şiran Mustafa Beyaz Vocational School, Gümüşhane University, Gumushane, Turkey
| | - Ece Oktay
- Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burcu Onuk
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozan Gündemir
- Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Dubied M, Montuire S, Navarro N. Functional constraints channel mandible shape ontogenies in rodents. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220352. [PMID: 36300135 PMCID: PMC9579770 DOI: 10.1098/rsos.220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In mammals, postnatal growth plays an essential role in the acquisition of the adult shape. During this period, the mandible undergoes many changing functional constraints, leading to spatialization of bone formation and remodelling to accommodate various dietary and behavioural changes. The interactions between the bone, muscles and teeth drive this developmental plasticity, which, in turn, could lead to convergences in the developmental processes constraining the directionality of ontogenies, their evolution and thus the adult shape variation. To test the importance of the interactions between tissues in shaping the ontogenetic trajectories, we compared the mandible shape at five postnatal stages on three rodents: the house mouse, the Mongolian gerbil and the golden hamster, using geometric morphometrics. After an early shape differentiation, by both longer gestation and allometric scaling in gerbils or early divergence of postnatal ontogeny in hamsters in comparison with the mouse, the ontogenetic trajectories appear more similar around weaning. The changes in muscle load associated with new food processing and new behaviours at weaning seem to impose similar physical constraints on the mandible, driving the convergences of the ontogeny at that stage despite an early anatomical differentiation. Nonetheless, mice present a rather different timing compared with gerbils or hamsters.
Collapse
Affiliation(s)
- Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
| | - Sophie Montuire
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, 6 bd Gabriel, 21000 Dijon, France
- EPHE, PSL University, 75014 Paris, France
| |
Collapse
|
4
|
Differential Impact of Forest Fragmentation on Fluctuating Asymmetry in South Amazonian Small Mammals. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Southern Amazonia encompasses some of the most human-impacted and deforested regions of South America, resulting in a hyper-fragmented landscape. In this context, by using a geometric morphometrics approach, we aimed to examine the effect of forest fragmentation on developmental instability (DI) of the mandible, assessed by variation of fluctuating asymmetry (FA), in four neotropical small mammal species inhabiting the municipality of Alta Floresta (Brazil). (2) Methods: The impact of fragment area, fragment shape, isolation, and edge length on DI were assessed by measuring variation in mandibular FA in the long-tailed spiny rat (Proechimys longicaudatus), the hairy-tailed bolo mouse (Necromys lasiurus), the woolly mouse opossum (Marmosa demerarae), and the Amazonian red-sided opossum (Monodelphis glirina). Mandibles from a total of 304 specimens originating from different-sized fragments (ranging from 5 to 900 ha) were used. Twelve homologous landmarks were digitized in photographs of the mesial view of each hemi-mandible. (3) Results: The two largest species, P. longicaudatus and M. demerarae, exhibited significantly higher levels of FA in mandibular shape in small fragments (5–26 ha) in comparison to large ones (189–900 ha). Edge length negatively impacted M. demerarae, the only arboreal species, reinforcing its strongest dependence on core forest habitats. (4) Conclusions: For small mammal communities, we propose that fragments >~200 ha should be the focus of conservation efforts, as both resilient and more sensitive species would benefit from their more preserved biotic and abiotic conditions. Conversely, fragments <~25 ha seem to lead to a significant increase in stress during developmental stages.
Collapse
|
5
|
Dubied M, Montuire S, Navarro N. Commonalities and evolutionary divergences of mandible shape ontogenies in rodents. J Evol Biol 2021; 34:1637-1652. [PMID: 34449936 DOI: 10.1111/jeb.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
In mammals, significant changes take place during postnatal growth, linked to changes in diet (from sucking to gnawing). During this period, mandible development is highly interconnected with muscle growth and the epigenetic interactions between muscle and bone control the spatialization of bone formation and remodelling in response to biomechanical strain. This mechanism contributes to postnatal developmental plasticity and may have influenced the course of evolutionary divergences between species and clades. We sought to model postnatal changes at a macroevolutionary scale by analysing ontogenetic trajectories of mandible shape across 16 species belonging mainly to two suborders of Rodents, Myomorpha and Hystricomorpha, which differ in muscle attachments, tooth growth and life-history traits. Myomorpha species present a much stronger magnitude of changes over a shorter growth period. Among Hystricomorpha, part of the observed adult shape is set up prenatally, and most postnatal trajectories are genus-specific, which agrees with nonlinear developmental trajectories over longer gestational periods. Beside divergence at large scale, we find some collinearities between evolutionary and developmental trajectories. A common developmental trend was also observed, leading to enlargement of the masseter fossa during postnatal growth. The tooth growth, especially hypselodonty, seems to be a major driver of divergences of postnatal trajectories. These muscle- and tooth-related effects on postnatal trajectories suggest opportunities for developmental plasticity in the evolution of the mandible shape, opportunities that may have differed across Rodent clades.
Collapse
Affiliation(s)
- Morgane Dubied
- Biogeosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sophie Montuire
- Biogeosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon, France.,EPHE, PSL University, Paris, France
| | - Nicolas Navarro
- Biogeosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon, France.,EPHE, PSL University, Paris, France
| |
Collapse
|
6
|
Brachetta-Aporta N, Gonzalez PN, Bernal V. Association between shape changes and bone remodeling patterns in the middle face during ontogeny in South American populations. Anat Rec (Hoboken) 2021; 305:156-169. [PMID: 33844463 DOI: 10.1002/ar.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022]
Abstract
The morphology of facial bones is modeled by processes of bone formation and resorption induced by interactions between tissues and compensatory responses. However, the role of remodeling patterns on the morphological changes within and among populations has been scarcely explored. Here, we assess the association between facial shape and the underlying bone cell activity throughout the ontogeny in two Amerindian populations that represent the extremes of craniofacial variation in South America. The sample comprises 71 individuals (36 adults and 35 subadults) representing hunter-gatherers from Patagonia and horticulturists from Northwest Argentina. We analyzed the shape and size of the zygomatic and the maxilla, and compared them with the patterns of bone formation and resorption. Bone formation and resorption were described by quantitative histological analysis of bone surfaces. Morphological changes were described by landmarks and semilandmarks digitized on 3D surfaces obtained from CT images. The results from multivariate statistics analysis show that the patterns of bone remodeling are associated with variation in the morphology of the middle face. We found a similar pattern of facial shape variation along the ontogenetic trajectory in the two samples, and a similar trend in the amount of formation and resorption activities across ages. The main differences between samples were found in the distribution of the areas of bone formation and resorption, possibly associated with mechanical bone response to masticatory loading. These findings provide clues about the processes and mechanisms of bone development involved in the facial morphological differentiation in human populations from southern South America.
Collapse
Affiliation(s)
- Natalia Brachetta-Aporta
- IIPG, Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina.,UNRN, Universidad Nacional de Río Negro. CONICET, Río Negro, Argentina
| | - Paula N Gonzalez
- ENyS. Estudios en Neurociencias y Sistemas Complejos, Buenos Aires, Argentina
| | - Valeria Bernal
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. CONICET, La Plata, Argentina
| |
Collapse
|
7
|
Barqué A, Jan K, De La Fuente E, Nicholas CL, Hynes RO, Naba A. Knockout of the gene encoding the extracellular matrix protein SNED1 results in early neonatal lethality and craniofacial malformations. Dev Dyn 2020; 250:274-294. [PMID: 33012048 DOI: 10.1002/dvdy.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Collapse
Affiliation(s)
- Anna Barqué
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyleen Jan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emanuel De La Fuente
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christina L Nicholas
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anthropology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Durão AF, Ventura J, Muñoz-Muñoz F. Comparative post-weaning ontogeny of the mandible in fossorial and semi-aquatic water voles. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Brachetta-Aporta N, Gonzalez PN, Bernal V. Integrating data on bone modeling and morphological ontogenetic changes of the maxilla in modern humans. Ann Anat 2019; 222:12-20. [DOI: 10.1016/j.aanat.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
|
10
|
Martínez-Vargas J, Muñoz-Muñoz F, López-Fuster MJ, Cubo J, Ventura J. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism. Anat Rec (Hoboken) 2018; 301:1360-1381. [PMID: 29669189 DOI: 10.1002/ar.23835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Abstract
The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jorge Cubo
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
11
|
Martínez-Vargas J, Martinez-Maza C, Muñoz-Muñoz F, Medarde N, Lamrous H, López-Fuster MJ, Cubo J, Ventura J. Comparative postnatal histomorphogenesis of the mandible in wild and laboratory mice. Ann Anat 2017; 215:8-19. [PMID: 28935565 DOI: 10.1016/j.aanat.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/19/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Cayetana Martinez-Maza
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Nuria Medarde
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Hayat Lamrous
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain.
| | - Jorge Cubo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|