1
|
MacLaren JA, Corssmit E, MacMillan M, Rojas-Jimenez J. A Quantitative Analysis of the Manus Musculature in Tapirs (Perissodactyla: Tapiridae). J Morphol 2025; 286:e70051. [PMID: 40308183 DOI: 10.1002/jmor.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The distal limb of many hooved mammals (ungulates) has become highly specialised, with tendonised muscles and elongate bones and ligaments. Several clades of ungulates retain fleshy, muscularised distal forelimbs; these include hippopotamuses, rhinoceroses, and tapirs. Of these species, tapirs (Tapiridae: Tapirus) represent the most plesiomorphic manus anatomy for its higher taxonomic group (Perissodactyla); the tetradactyl manus of tapirs is reminiscent of the earliest members of the lineages leading to modern horses (equids) and rhinocerotids. Within the tapir manus, osteological evidence indicates clear differences in load distribution, digit use during locomotion, and phylogenetic signal in the shape of certain bony elements. To date, no quantitative investigation has ever been performed to explore differences in the muscular anatomy of the tapir distal forelimb (manus). Here, we conducted a comparative muscle architecture quantification of the muscles which are intrinsic to the tapir manus, across all four extant species (Tapirus indicus, T. bairdii, T. pinchaque, T. terrestris). Despite limited sample sizes, we observed notable variation across the different species with regard to the force-generating potential of the muscles (based on physiological cross-sectional area, PCSA) and the shortening range of each muscle (based on fascicle length). High force-generating capacities were recovered for the interosseus muscles (preventing hyperextension) for the third and fourth digits, as may be expected for a mesaxonic manus such as that of Tapirus. Our results also indicate subtle differences in patterns of force-generating potential in the interosseus muscles between specimens housed in captivity and those from the wild, specifically living in upland rainforest and exhibiting ranging behaviour up and downhill on a regular basis. These data offer tantalising insights into the variation in the force-excursion relationship in the muscles of the ungulate manus, providing both qualitative and quantitative information for veterinarians, biologists, and palaeontologists investigating perissodactyl locomotor anatomy and evolution.
Collapse
Affiliation(s)
- Jamie A MacLaren
- Department of Biology, Universiteit Antwerpen, Building D, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp, Belgium
- Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Liège, Belgium
- Palaeobiosphere Evolution Lab, Institute of Natural Sciences, Brussels, Belgium
| | - Eva Corssmit
- Laboratorio de Anatomía Animal, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Martha MacMillan
- Zoology Preparation Lab, Denver Museum of Nature and Science, Denver, CO, USA
| | - Jorge Rojas-Jimenez
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA, USA
- TapirVet, San José, Costa Rica
| |
Collapse
|
2
|
Mallet C, Houssaye A. Deciphering the influence of evolutionary legacy and functional constraints on the patella: an example in modern rhinoceroses amongst perissodactyls. PeerJ 2024; 12:e18067. [PMID: 39469593 PMCID: PMC11514768 DOI: 10.7717/peerj.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
In mammals, the patella is the biggest sesamoid bone of the skeleton and is of crucial importance in posture and locomotion, ensuring the role of a pulley for leg extensors while protecting and stabilizing the knee joint. Despite its central biomechanical role, the relation between the shape of the patella and functional factors, such as body mass or locomotor habit, in the light of evolutionary legacy are poorly known. Here, we propose a morphofunctional investigation of the shape variation of the patella among modern rhinoceroses and more generally among perissodactyls, this order of ungulates displaying a broad range of body plan, body mass and locomotor habits, to understand how the shape of this sesamoid bone varies between species and relatively to these functional factors. Our investigation, relying on three dimensional geometric morphometrics and comparative analyses, reveals that, within Rhinocerotidae and between the three perissodactyl families, the shape of the patella strongly follows the phylogenetic affinities rather than variations in body mass. The patellar shape is more conservative than initially expected both within and between rhinoceroses, equids and tapirs. The development of a medial angle, engendering a strong mediolateral asymmetry of the patella, appears convergent in rhinoceroses and equids, while tapirs retain a symmetric bone close to the plesiomorphic condition of the order. This asymmetric patella is likely associated with the presence of a "knee locking" mechanism in both equids and rhinos. The emergence of this condition may be related to a shared locomotor habit (transverse gallop) in both groups. Our investigation underlines unexcepted evolutionary constraints on the shape of a sesamoid bone usually considered as mostly driven by functional factors.
Collapse
Affiliation(s)
- Christophe Mallet
- Faculty of Engineering, University of Mons, Department of Geology and Applied Geology, Mons, Belgium
- Institute of Natural Sciences, Operational Directorate Earth and History of Life, Brussels, Belgium
| | - Alexandra Houssaye
- Muséum National d’Histoire Naturelle, Mécanismes adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| |
Collapse
|
3
|
Vincelette AR, Renders E, Scott KM, Falkingham PL, Janis CM. Hipparion tracks and horses' toes: the evolution of the equid single hoof. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230358. [PMID: 37351494 PMCID: PMC10282582 DOI: 10.1098/rsos.230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The traditional story of the evolution of the horse (family Equidae) has been in large part about the evolution of their feet. How did modern horses come to have a single toe (digit III), with the hoof bearing a characteristic V-shaped keratinous frog on the sole, and what happened to the other digits? While it has long been known that the proximal portions of digits II and IV are retained as the splint bones, a recent hypothesis suggested that the distal portion of these digits have also been retained as part of the frog, drawing upon the famous Laetoli footprints of the tridactyl (three-toed) equid Hipparion as part of the evidence. We show here that, while there is good anatomical and embryological evidence for the proximal portions of all the accessory digits (i.e. I and V, as well as II and IV) being retained in the feet of modern horses, evidence is lacking for the retention of any distal portions of these digits. There is also good ichnological evidence that many tridactyl equids possessed a frog, and that the frog has been part of the equid foot for much of equid evolutionary history.
Collapse
Affiliation(s)
| | - Elise Renders
- Department of Functional Morphology, Faculty of Veterinary Medicine, Utrecht University (Ret.), Utrecht, 3584 CM, The Netherlands
| | - Kathleen M. Scott
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, 08854, NJ, USA
| | - Peter L. Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Christine M. Janis
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, 02912, RI, USA
| |
Collapse
|
4
|
Kang MC, Kwon J, Kim IS, Park BY, Tae HJ, Jang YJ, Sim J, Ahn D. Morphological and morphometric study of the scapulae of Korean wild deer. Sci Rep 2023; 13:7620. [PMID: 37165030 PMCID: PMC10172336 DOI: 10.1038/s41598-023-33730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Korean water deer (Hydropotes inermis argyropus; Heude, 1884) and Siberian roe deer (Capreolus pygargus; Pallas, 1771) are Korean wild deer classified in the tribe Capreolini. C. pygargus in Korea were previously considered a single species; however, it was recently suggested that roe deer living on Jeju Island (Jeju roe deer; Capreolus pygargus jejuensis) is a distinct subspecies from roe deer living on the Korean peninsula (mainland roe deer; Capreolus pygargus tianschanicus) based on several studies demonstrating genetic and morphological features. In this study, we suggests that the scapular morphology and osteometric data can be used for interspecies discrmination between Korean wild deer. To compare the morphological characteristics of scapula among the three groups of deer, we analyzed the features and nine osteomorphological measurements of 31 H. i. argyropus (14 males and 17 females), 18 C. p. jejuensis (4 males and 14 females), and 23 C. p. tianschanicus (16 females and 7 males). The estimated ages of the deer were over 32-35 months. Data were analyzed by one-way repeated measures analysis of variance with post hoc Duncan test and discriminant functional analysis (DFA). H. i. argyropus and C. p. tianschanicus had the smallest and largest scapulae, respectively. The scapulae of the three Korean wild deer had a similar triangular shape, which was obscured by the tuber of the scapular spine, pointed acromion, broad infraspinous fossa, narrow supraspinous fossa, and partial ossification of scapular cartilage in older deer. H. i. argyropus had certain distinctive features, including a caudally pointed acromion, a notch between the supraglenoid tubercle and glenoid cavity (NBSG), a glenoid notch, and no sexual dimorphism, except for the longest dorsal length (Ld) and the scapular index (SI). C. p. jejuensis had a larger scapular index (SI) (61.74 ± 0.74%), compared with the SIs of H. i. argyropus and C. p. tianschanicus. The unique features of the scapula in C. p. jejuensis include its S-shaped cranial border. The C. p. jejuensis had a cranially pointed acromion, less frequent presence of glenoid notch and NBSG, short length of supraglenoid tubercle, and no sexual dimorphism. The C. p. tianschanicus had elevated cranial margin of the glenoid cavity, and frequent presence of glenoid notch and NBSG, similar to the H. i. argyropus. Similar to C. p. jejuensis, C. p. tianschanicus had a cranially pointed acromion. However, sexual dimorphism was observed in C. p. tianschanicus. DFA using osteometric data showed 97.22% of specimens were classified correctly into their species, meaning the osteometric parameters can be used for interspecies discrimination of Korean wild deer. Our findings indicate that the scapular morphologies of the three Korean wild deer have certain similarities and differences, suggesting that C. p. jejuensis are distinct from C. p. tianschanicus.
Collapse
Affiliation(s)
- Myung-Cheon Kang
- Department of Companion Animal Health, Busan Kyungsang College, 170 Gobun-ro, Yeonje-gu, Busan, 47583, Republic of Korea
| | - Jun Kwon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - In-Shik Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Byung-Yong Park
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Hyun-Jin Tae
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young-Jin Jang
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Jeoungha Sim
- Department of Nursing, College of Medical Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| | - Dongchoon Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
5
|
VAN Linden L, Stoops K, Dumbá LCCS, Cozzuol MA, Maclaren JA. Sagittal crest morphology decoupled from relative bite performance in Pleistocene tapirs (Perissodactyla: Tapiridae). Integr Zool 2023; 18:254-277. [PMID: 35048523 DOI: 10.1111/1749-4877.12627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bite force is often associated with specific morphological features, such as sagittal crests. The presence of a pronounced sagittal crest in some tapirs (Perissodactyla: Tapiridae) was recently shown to be negatively correlated with hard-object feeding, in contrast with similar cranial structures in carnivorans. The aim of this study was to investigate bite forces and sagittal crest heights across a wide range of modern and extinct tapirs and apply a comparative investigation to establish whether these features are correlated across a broad phylogenetic scope. We examined a sample of 71 specimens representing 15 tapir species (5 extant, 10 extinct) using the dry-skull method, linear measurements of cranial features, phylogenetic reconstruction, and comparative analyses. Tapirs were found to exhibit variation in bite force and sagittal crest height across their phylogeny and between different biogeographical realms, with high-crested morphologies occurring mostly in Neotropical species. The highest bite forces within tapirs appear to be driven by estimates for the masseter-pterygoid muscle complex, rather than predicted forces for the temporalis muscle. Our results demonstrate that relative sagittal crest height is poorly correlated with relative cranial bite force, suggesting high force application is not a driver for pronounced sagittal crests in this sample. The divergent biomechanical capabilities of different contemporaneous tapirids may have allowed multiple species to occupy overlapping territories and partition resources to avoid excess competition. Bite forces in tapirs peak in Pleistocene species, independent of body size, suggesting possible dietary shifts as a potential result of climatic changes during this epoch.
Collapse
Affiliation(s)
- Lisa VAN Linden
- Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
| | - Kim Stoops
- Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
| | - Larissa C C S Dumbá
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Mario A Cozzuol
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jamie A Maclaren
- Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium.,Evolution and Diversity Dynamics Lab, Department of Geology, Université de Liège, Quartier Agora, Liège, Belgium
| |
Collapse
|
6
|
MacLaren JA, McHorse BK. Comparative forelimb myology and muscular architecture of a juvenile Malayan tapir (Tapirus indicus). J Anat 2019; 236:85-97. [PMID: 31515803 DOI: 10.1111/joa.13087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
The absence of preserved soft tissues in the fossil record is frequently a hindrance for palaeontologists wishing to investigate morphological shifts in key skeletal systems, such as the limbs. Understanding the soft tissue composition of modern species can aid in understanding changes in musculoskeletal features through evolution, including those pertaining to locomotion. Establishing anatomical differences in soft tissues utilising an extant phylogenetic bracket can, in turn, assist in interpreting morphological changes in hard tissues and modelling musculoskeletal movements during evolutionary transitions (e.g. digit reduction in perissodactyls). Perissodactyls (horses, rhinoceroses, tapirs and their relatives) are known to have originated with a four-toed (tetradactyl) forelimb condition. Equids proceeded to reduce all but their central digit, resulting in monodactyly, whereas tapirs retained the ancestral tetradactyl state. The modern Malayan tapir (Tapirus indicus) has been shown to exhibit fully functional tetradactyly in its forelimb, more so than any other tapir, and represents an ideal case-study for muscular arrangement and architectural comparison with the highly derived monodactyl Equus. Here, we present the first quantification of muscular architecture of a tetradactyl perissodactyl (T. indicus), and compare it to measurements from modern monodactyl caballine horse (Equus ferus caballus). Each muscle of the tapir forelimb was dissected out from a cadaver and measured for architectural properties: muscle-tendon unit (MTU) length, MTU mass, muscle mass, pennation angle, and resting fibre length. Comparative parameters [physiological cross-sectional area (PCSA), muscle volume, and % muscle mass] were then calculated from the raw measurements. In the shoulder region, the infraspinatus of T. indicus exhibits dual origination sites on either side of the deflected scapular spine. Within ungulates, this condition has only been previously reported in suids. Differences in relative contribution to limb muscle mass between T. indicus and Equus highlight forelimb muscles that affect mobility in the lateral and medial digits (e.g. extensor digitorum lateralis). These muscles were likely reduced in equids during their evolutionary transition from tetradactyl forest-dwellers to monodactyl, open-habitat specialists. Patterns of PCSA across the forelimb were similar between T. indicus and Equus, with the notable exceptions of the biceps brachii and flexor carpi ulnaris, which were much larger in Equus. The differences observed in PCSA between the tapir and horse forelimb muscles highlight muscles that are essential for maintaining stability in the monodactyl limb while moving at high speeds. This quantitative dataset of muscle architecture in a functionally tetradactyl perissodactyl is a pivotal first step towards reconstructing the locomotor capabilities of extinct, four-toed ancestors of modern perissodactyls, and providing further insights into the equid locomotor transition.
Collapse
Affiliation(s)
- Jamie A MacLaren
- Functional Morphology Lab, Department of Biology, Universiteit Antwerpen, Antwerp, Belgium.,Evolution and Diversity Dynamics Lab, Department of Geology, Université Liège, Liège, Belgium
| | - Brianna K McHorse
- Museum of Comparative Zoology, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, USA
| |
Collapse
|
7
|
MacLaren JA, Nauwelaerts S. Modern Tapirs as Morphofunctional Analogues for Locomotion in Endemic Eocene European Perissodactyls. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Maclaren JA, Hulbert RC, Wallace SC, Nauwelaerts S. A morphometric analysis of the forelimb in the genus Tapirus (Perissodactyla: Tapiridae) reveals influences of habitat, phylogeny and size through time and across geographical space. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jamie A Maclaren
- Department of Biology, Universiteit Antwerpen, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp,, Belgium
| | - Richard C Hulbert
- Florida Museum of Natural History, University of Florida, Dickinson Hall, Gainesville, Florida, FL, USA
| | - Steven C Wallace
- Don Sundquist Center of Excellence in Paleontology, Department of Geosciences, East Tennessee State University, Johnson City TN, USA
| | - Sandra Nauwelaerts
- Department of Biology, Universiteit Antwerpen, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp,, Belgium
- Centre for Research and Conservation, Koninklijke Maatschappij voor Dierkunde (KMDA), Koningin Astridplein, Antwerp, Belgium
| |
Collapse
|
9
|
May-Davis S, Brown W, Vermeulen Z. The Disappearing Lamellae: Implications of New Findings in the Family Equidae Suggest the Loss of Nuchal Ligament Lamellae on C6 and C7 Occurred After Domestication. J Equine Vet Sci 2018; 68:108-114. [PMID: 31256881 DOI: 10.1016/j.jevs.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Conflicting data predominantly describes the equine nuchal ligament lamellae (NLL) attachments as C2-C6 or C2-C7; however, preliminary evidence suggests C2-C5. This study aimed to identify morphological variations in the attachments of the NLL in four species of the family equidae and determine if the variations were species or breed linked. Cadaveric examination evaluated 98 equids; Equusasinus (n = 2), Equus ferus caballus (n = 93), Equus przewalskii (n = 2), and Equus quagga boehmi (n = 1). Twenty breeds of E. f. caballus were included according to breed type-modern horse (n = 81), ancient type (n = 10), primitive (n = 4). Of the 98 equids, observations were divided into three categories according to the NLL attachments: C2-C5, C2-C6, and C2-C7; in category C2-C7, E. f. caballus (n = 3/93), modern horse 0 of 81, ancient 1 of 8, primitive 2 of 4; in category C2-C6, modern horse 2 of 81; in category C2-C5, modern horse 79 of 81, ancient type 7 of 8, primitive 2 of 4. Equus asinus, E. przewalskii, and E. q. boehmi all expressed category C2-C7. In total, 88 of 98 expressed category C2-C5; 2 of 98 category C2-C6; and 8 of 98 category C2-C7. These findings suggest that category C2-C5 provides sufficient evidence to suggest a normal occurrence. The high incidence of an absent NLL on C6 and C7 may be considered a contributing factor in caudal cervical osteoarthritis. Furthermore, category C2-C7 still exists in an ancient and primitive breed closely related to the tarpan, implying the NLL may have been attached from C2 to C7 in prehistoric horse before domestication. This hypothesis is supported by the findings of E. asinus, E. przewalskii, and E. q. boehmi, displaying attachments from C2 to C7.
Collapse
Affiliation(s)
- Sharon May-Davis
- The University of New England, Canine and Equine Research Group, Armidale, New South Wales, Australia.
| | - Wendy Brown
- The University of New England, Canine and Equine Research Group, Armidale, New South Wales, Australia
| | | |
Collapse
|