1
|
Naredo J, Combita-Heredia JO, van de Kamp T, Zuber M, Hamann E, Vázquez MM, Klompen H. Structure and variability in the female genital atrium of Uropodina (Acari: Parasitiformes). ARTHROPOD STRUCTURE & DEVELOPMENT 2025; 86:101428. [PMID: 40157007 DOI: 10.1016/j.asd.2025.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025]
Abstract
Primary and secondary sexual characters of Mesostigmata are often used in species descriptions and phylogenetic analyses. The use of these characters has been focused almost exclusively on external structures. Digital 3D reconstruction based on synchrotron X-ray microtomography (SR-μCT) data allowed a comparative investigation of the structure of an internal system, the female genital atrium, in the mite lineage Uropodina (Parasitiformes: Mesostigmata). Despite substantial variability in observed structures, a general model for the endogynium, vagina, and muscle structure has been generated using a combination of SR-μCT and light microscopy. Most of the variations are hypothesized as related to species recognition and/or manipulation of the endospermatophore. The recorded variability may have substantial phylogenetic value, as a previously unreported modification of the vagina appears to diagnose a substantial lineage of "higher" Uropodina. This set of observations also support the hypothesis that the large family Urodinychidae is polyphyletic. Overall, SR-μCT and 3D reconstruction turned out to be very helpful for studies on internal organ systems in these very small organisms, lessening the need for laborious dissections or extensive Transmission electron microscopy-based investigations.
Collapse
Affiliation(s)
- Jeremy Naredo
- Acarology Laboratory, Museum of Biological Diversity, Ohio State University, Columbus, OH, 43212, USA.
| | - J Orlando Combita-Heredia
- Acarology Laboratory, Museum of Biological Diversity, Ohio State University, Columbus, OH, 43212, USA
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany; Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Ma Magdalena Vázquez
- Universidad de Quintana Roo, Av. Boulevard Bahía S / N Col. Del Bosque, CP 77009, Chetumal Quintana Roo, Mexico
| | - Hans Klompen
- Acarology Laboratory, Museum of Biological Diversity, Ohio State University, Columbus, OH, 43212, USA
| |
Collapse
|
2
|
Huber JT, Bolte K, Read JD. The morphological diversity of Mymaridae (Hymenoptera): an atlas of scanning electron micrographs. Part 3. Structure of the metasoma. Zootaxa 2024; 5504:1-75. [PMID: 39647084 DOI: 10.11646/zootaxa.5504.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 12/10/2024]
Abstract
This is the third in a series of studies that aim to provide an overview of the morphological diversity of Mymaridae (Hymenoptera) or fairyflies, a monophyletic family of small parasitic wasps postulated as the sister group of all other Chalcidoidea. The external morphology of the metasoma of about half of the 115 currently valid described genera and subgenera is described and illustrated with about 460 scanning electron micrographs. Fifteen annotated figures of external metasoma structures and the male genitalia are included. The names of the 75 genera and subgenera illustrated, at least in part, are tabulated. An appendix lists the 23 acronyms used for morphological terms. The variety of characters and their features that could be used to help define morphologically the genera, and possibly also the species, of Mymaridae is briefly discussed.
Collapse
Affiliation(s)
- John T Huber
- Natural Resources Canada c/o Canadian National Collection of Insects; Arachnids and Nematodes; K.W. Neatby Building; 960 Carling Ave.; Ottawa; ON; K1A 0C6; Canada.
| | - Klaus Bolte
- Natural Resources Canada c/o Canadian National Collection of Insects; Arachnids and Nematodes; K.W. Neatby Building; 960 Carling Ave.; Ottawa; ON; K1A 0C6; Canada.
| | - Jennifer D Read
- Natural Resources Canada c/o Canadian National Collection of Insects; Arachnids and Nematodes; K.W. Neatby Building; 960 Carling Ave.; Ottawa; ON; K1A 0C6; Canada.
| |
Collapse
|
3
|
Boudinot BE, van de Kamp T, Peters P, Knöllinger K. Male genitalia, hierarchical homology, and the anatomy of the bullet ant (Paraponera clavata; Hymenoptera, Formicidae). J Morphol 2024; 285:e21757. [PMID: 39192511 DOI: 10.1002/jmor.21757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
The male genitalia of insects are among the most variable, complex, and informative character systems for evolutionary analysis and taxonomic purposes. Because of these general properties, many generations of systematists have struggled to develop a theory of homology and alignment of parts. This struggle continues to the present day, where fundamentally different models and nomenclatures for the male genitalia of Hymenoptera, for example, are applied. Here, we take a multimodal approach to digitalize and comprehensively document the genital skeletomuscular anatomy of the bullet ant (Paraponera clavata; Hymenoptera: Formicidae), including hand dissection, synchrotron radiation microcomputed tomography, microphotography, scanning electron microscopy, confocal laser scanning microscopy, and 3D-printing. Through this work, we generate several new concepts for the structure and form of the male genitalia of Hymenoptera, such as for the endophallic sclerite (=fibula ducti), which we were able to evaluate in detail for the first time for any species. Based on this phenomic anatomical study and comparison with other Holometabola and Hexapoda, we reconsider the homologies of insect genitalia more broadly, and propose a series of clarifications in support of the penis-gonopod theory of male genital identity. Specifically, we use the male genitalia of Paraponera and insects more broadly as an empirical case for hierarchical homology by applying and refining the 5-category classification of serial homologs from DiFrisco et al. (2023) (DLW23) to all of our formalized concepts. Through this, we find that: (1) geometry is a critical attribute to account for in ontology, especially as all individually identifiable attributes are positionally indexed hence can be recognized as homomorphic; (2) the definition of "structure" proposed by DLW23 is difficult to apply, and likely heterogeneous; and (3) formative elements, or spatially defined foldings or in- or evaginations of the epidermis and cuticle, are an important yet overlooked class of homomorphs. We propose a morphogenetic model for male and female insect genitalia, and a model analogous to gene-tree species-tree mappings for the hierarchical homology of male genitalia specifically. For all of the structures evaluated in the present study, we provide 3D-printable models - with and without musculature, and in various states of digital dissection - to facilitate the development of a tactile understanding. Our treatment of the male genitalia of P. clavata serves as a basic template for future phenomic studies of male insect genitalia, which will be substantially improved with the development of automation and collections-based data processing pipelines, that is, collectomics. The Hymenoptera Anatomy Ontology will be a critical resource to include in this effort, and in best practice concepts should be linked.
Collapse
Affiliation(s)
- Brendon E Boudinot
- Department of Terrestrial Zoology, Entomology II, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patricia Peters
- Department of Terrestrial Zoology, Entomology II, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Katja Knöllinger
- Department of Terrestrial Zoology, Entomology II, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Zurich University of the Arts, Zurich, Switzerland
| |
Collapse
|
4
|
Meira OM, Beutel RG, Pohl H, van de Kamp T, Almeida EAB, Boudinot BE. Bee morphology: A skeletomuscular anatomy of Thyreus (Hymenoptera: Apidae). J Morphol 2024; 285:e21751. [PMID: 39041670 DOI: 10.1002/jmor.21751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Although the knowledge of the skeletal morphology of bees has progressed enormously, a corresponding advance has not happened for the muscular system. Most of the knowledge about bee musculature was generated over 50 years ago, well before the digital revolution for anatomical imaging, including the application of microcomputed tomography. This technique, in particular, has made it possible to dissect small insects digitally, document anatomy efficiently and in detail, and visualize these data three dimensionally. In this study, we document the skeletomuscular system of a cuckoo bee, Thyreus albomaculatus and, with that, we provide a 3D atlas of bee skeletomuscular anatomy. The results obtained for Thyreus are compared with representatives of two other bee families (Andrenidae and Halictidae), to evaluate the generality of our morphological conclusions. Besides documenting 199 specific muscles in terms of origin, insertion, and structure, we update the interpretation of complex homologies in the maxillolabial complex of bee mouthparts. We also clarify the complicated 3D structure of the cephalic endoskeleton, identifying the tentorial, hypostomal, and postgenal structures and their connecting regions. We describe the anatomy of the medial elevator muscles of the head, precisely identifying their origins and insertions as well as their homologs in other groups of Hymenoptera. We reject the hypothesis that the synapomorphic propodeal triangle of Apoidea is homologous with the metapostnotum, and instead recognize that this is a modification of the third phragma. We recognize two previously undocumented metasomal muscle groups in bees, clarifying the serial skeletomusculature of the metasoma and revealing shortcomings of Snodgrass' "internal-external" terminological system for the abdomen. Finally, we elucidate the muscular structure of the sting apparatus, resolving previously unclear interpretations. The work conducted herein not only provides new insights into bee morphology but also represents a source for future phenomic research on Hymenoptera.
Collapse
Affiliation(s)
- Odair M Meira
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Brendon E Boudinot
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
- National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Naturmuseum Frankfurt, Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
5
|
Griebenow Z. Systematic revision of the ant subfamily Leptanillinae (Hymenoptera, Formicidae). Zookeys 2024; 1189:83-184. [PMID: 38314112 PMCID: PMC10838183 DOI: 10.3897/zookeys.1189.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
The genus-level taxonomy of the ant subfamily Leptanillinae (Hymenoptera: Formicidae) is here revised, with the aim of delimiting genus-level taxa that are reciprocally monophyletic and readily diagnosable based upon all adult forms. This new classification reflects molecular phylogenetics and is informed by joint consideration of both male and worker morphology. Three valid genera are recognized in the Leptanillinae: Opamyrma, Leptanilla (= Scyphodonsyn. nov., Phaulomyrma, Leptomesites, Noonillasyn. nov., Yavnellasyn. nov.), and Protanilla (= Anomalomyrmasyn. nov., Furcotanilla). Leptanilla and Protanilla are further divided into informal, monophyletic species groups. Synoptic diagnoses are provided for all genera and informal supraspecific groupings. In addition, worker-based keys to all described species within the Leptanillinae for which the worker caste is known are provided; and male-based keys to all species for which males are known, plus undescribed male morphospecies for which molecular data are published. The following species are described as new: Protanillawallaceisp. nov., Leptanillaacherontiasp. nov., Leptanillabelantansp. nov., Leptanillabethyloidessp. nov., and Leptanillanajaphallasp. nov.
Collapse
Affiliation(s)
- Zachary Griebenow
- Department of Entomology & Nematology, University of California, Davis, CA USAUniversity of CaliforniaDavisUnited States of America
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO USAColorado State UniversityFort CollinsUnited States of America
| |
Collapse
|
6
|
Yamada A, Nguyen DD, Eguchi K. First discovery of the ant genus Eburopone Borowiec, 2016 (Hymenoptera, Formicidae, Dorylinae) in the Oriental realm, with description of a new species from Vietnam. Zookeys 2023; 1184:1-17. [PMID: 38314328 PMCID: PMC10838167 DOI: 10.3897/zookeys.1184.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 02/06/2024] Open
Abstract
The doryline ant genus Eburopone Borowiec, 2016 currently contains only one valid species, E.wroughtoni (Forel, 1910) from southern Africa, with a considerable number of undescribed species awaiting formal description in the Afrotropical and Malagasy regions. In the present paper, Eburoponeeasoanasp. nov. is described based on workers and dealate queens from a colony series collected in an evergreen forest on the Dak Lak Plateau of Vietnam (Ea So Nature Reserve, Dak Lak Province). The worker of the new species is morphologically clearly distinguished from E.wroughtoni by the combination of following characteristics: i) frontal line distinct, extending a little beyond mid-length of cranium; ii) anterior (frontoclypeal) margins of torulo-posttorular complex not forming conspicuous lobes protruding over anterior clypeal margin in full-face view; iii) mandibles when closed in full-face view forming only a little space between anterior clypeal margin and mandibles; iv) promesonotal suture faint and inconspicuous; v) abdominal segment III in dorsal view distinctly wider than long, with lateral margins only feebly convex. This represents the first discovery of the genus Eburopone in the Oriental realm, revealing the disjunct distribution of the genus. A partial sequence of the mitochondrial COI gene (658 bp) is provided as a DNA barcode for the new species. A worker-based key to the doryline genera of the Oriental realm is also provided.
Collapse
Affiliation(s)
- Aiki Yamada
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
| | - Dai Dac Nguyen
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, VietnamInstitute of Ecology and Biological Resources, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Katsuyuki Eguchi
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, JapanNagasaki UniversityNagasakiJapan
| |
Collapse
|
7
|
Eggs B, Fischer S, Csader M, Mikó I, Rack A, Betz O. Terebra steering in chalcidoid wasps. Front Zool 2023; 20:26. [PMID: 37553687 PMCID: PMC10408236 DOI: 10.1186/s12983-023-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Various chalcidoid wasps can actively steer their terebra (= ovipositor shaft) in diverse directions, despite the lack of terebral intrinsic musculature. To investigate the mechanisms of these bending and rotational movements, we combined microscopical and microtomographical techniques, together with videography, to analyse the musculoskeletal ovipositor system of the ectoparasitoid pteromalid wasp Lariophagus distinguendus (Förster, 1841) and the employment of its terebra during oviposition. The ovipositor consists of three pairs of valvulae, two pairs of valvifers and the female T9 (9th abdominal tergum). The paired 1st and the 2nd valvulae are interlocked via the olistheter system, which allows the three parts to slide longitudinally relative to each other, and form the terebra. The various ovipositor movements are actuated by a set of nine paired muscles, three of which (i.e. 1st valvifer-genital membrane muscle, ventral 2nd valvifer-venom gland reservoir muscle, T9-genital membrane muscle) are described here for the first time in chalcidoids. The anterior and posterior 2nd valvifer-2nd valvula muscles are adapted in function. (1) In the active probing position, they enable the wasps to pull the base of each of the longitudinally split and asymmetrically overlapping halves of the 2nd valvula that are fused at the apex dorsally, thus enabling lateral bending of the terebra. Concurrently, the 1st valvulae can be pro- and retracted regardless of this bending. (2) These muscles can also rotate the 2nd valvula and therefore the whole terebra at the basal articulation, allowing bending in various directions. The position of the terebra is anchored at the puncture site in hard substrates (in which drilling is extremely energy- and time-consuming). A freely steerable terebra increases the chance of contacting a potential host within a concealed cavity. The evolution of the ability actively to steer the terebra can be considered a key innovation that has putatively contributed to the acquisition of new hosts to a parasitoid's host range. Such shifts in host exploitation, each followed by rapid radiations, have probably aided the evolutionary success of Chalcidoidea (with more than 500,000 species estimated).
Collapse
Affiliation(s)
- Benjamin Eggs
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Stefan Fischer
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Tübingen Structural Microscopy Core Facility (TSM), University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Michael Csader
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- State Museum of Natural History Karlsruhe, Erbprinzenstraße 13, 76133, Karlsruhe, Germany
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire Collection of Insects and Other Arthropods, University of New Hampshire, Spaulding Hall, Durham, NH, 03824, USA
| | - Alexander Rack
- ESRF - The European Synchrotron, Structure of Materials Group - ID19, CS 40220, 38043, Grenoble Cedex 9, France
| | - Oliver Betz
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
8
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
9
|
Boudinot BE, Richter AK, Hammel JU, Szwedo J, Bojarski B, Perrichot V. Genomic-Phenomic Reciprocal Illumination: Desyopone hereon gen. et sp. nov., an Exceptional Aneuretine-like Fossil Ant from Ethiopian Amber (Hymenoptera: Formicidae: Ponerinae). INSECTS 2022; 13:796. [PMID: 36135497 PMCID: PMC9502205 DOI: 10.3390/insects13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fossils are critical for understanding the evolutionary diversification, turnover, and morphological disparification of extant lineages. While fossils cannot be sequenced, phenome-scale data may be generated using micro-computed tomography (µ-CT), thus revealing hidden structures and internal anatomy, when preserved. Here, we adduce the male caste of a new fossil ant species from Miocene Ethiopian amber that resembles members of the Aneuretinae, matching the operational definition of the subfamily. Through the use of synchrotron radiation for µ-CT, we critically test the aneuretine-identity hypothesis. Our results indicate that the new fossils do not belong to the Aneuretinae, but rather the Ponerini (Ponerinae). Informed by recent phylogenomic studies, we were able to place the fossils close to the extant genus Cryptopone based on logical character analysis, with the two uniquely sharing absence of the subpetiolar process among all ponerine genera. Consequently, we: (1) revise the male-based key to the global ant subfamilies; (2) revise the definitions of Aneuretinae, Ponerinae, Platythyreini, and Ponerini; (3) discuss the evolution of ant mandibles; and (4) describe the fossils as †Desyopone hereon gen. et sp. nov. Our study highlights the value of males for ant systematics and the tremendous potential of phenomic imaging technologies for the study of ant evolution.
Collapse
Affiliation(s)
- Brendon E. Boudinot
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Vor dem Neutor 1, 07743 Jena, Germany
| | - Adrian K. Richter
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Vor dem Neutor 1, 07743 Jena, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Street, 80-309 Gdańsk, Poland
| | - Błażej Bojarski
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Street, 80-309 Gdańsk, Poland
| | - Vincent Perrichot
- CNRS, Géosciences Rennes, University Rennes, UMR 6118, 35000 Rennes, France
| |
Collapse
|