1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Gulati K, Adachi T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater 2023; 170:15-38. [PMID: 37562516 DOI: 10.1016/j.actbio.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants' bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface). STATEMENT OF SIGNIFICANCE: Nano-engineering is emerging as a surface modification platform for implants to augment their bioactivity and achieve favourable treatment outcomes. In this extensive review, we closely examine the use of Atomic Force Microscopy (AFM) to characterize the properties of nano-engineered implant surfaces (topography, mechanical, chemical, electrical and magnetic). Next, we discuss Single-Cell Force Spectroscopy (SCFS) via AFM towards precise force quantification encompassing a single cell's interaction with the implant surface. This interdisciplinary review will appeal to researchers from the broader scientific community interested in implants and cell adhesion to implants and provide an improved understanding of the surface characterization of nano-engineered implants.
Collapse
Affiliation(s)
- Karan Gulati
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan; The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Farokh Payam A, Passian A. Imaging beyond the surface region: Probing hidden materials via atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadg8292. [PMID: 37379392 DOI: 10.1126/sciadv.adg8292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Probing material properties at surfaces down to the single-particle scale of atoms and molecules has been achieved, but high-resolution subsurface imaging remains a nanometrology challenge due to electromagnetic and acoustic dispersion and diffraction. The atomically sharp probe used in scanning probe microscopy (SPM) has broken these limits at surfaces. Subsurface imaging is possible under certain physical, chemical, electrical, and thermal gradients present in the material. Of all the SPM techniques, atomic force microscopy has entertained unique opportunities for nondestructive and label-free measurements. Here, we explore the physics of the subsurface imaging problem and the emerging solutions that offer exceptional potential for visualization. We discuss materials science, electronics, biology, polymer and composite sciences, and emerging quantum sensing and quantum bio-imaging applications. The perspectives and prospects of subsurface techniques are presented to stimulate further work toward enabling noninvasive high spatial and spectral resolution investigation of materials including meta- and quantum materials.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Belfast, UK
| | - Ali Passian
- Quantum Computing and Sensing, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
5
|
Faluweki MK, Goehring L. Structural mechanics of filamentous cyanobacteria. J R Soc Interface 2022; 19:20220268. [PMID: 35892203 PMCID: PMC9326267 DOI: 10.1098/rsif.2022.0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023] Open
Abstract
Filamentous cyanobacteria, forming long strands of connected cells, are one of the earliest and most successful forms of life on Earth. They exhibit self-organized behaviour, forming large-scale patterns in structures like biomats and stromatolites. The mechanical properties of these rigid structures have contributed to their biological success and are important to applications like algae-based biofuel production. For active polymers like these cyanobacteria, one of the most important mechanical properties is the bending modulus, or flexural rigidity. Here, we quantify the bending stiffness of three species of filamentous cyanobacteria, of order Oscillatoriales, using a microfluidic flow device where single filaments are deflected by fluid flow. This is complemented by measurements of Young's modulus of the cell wall, via nanoindentation, and the cell wall thickness. We find that the stiffness of the cyanobacteria is well-captured by a simple model of a flexible rod, with most stress carried by a rigid outer wall. Finally, we connect these results to the curved shapes that these cyanobacteria naturally take while gliding, and quantify the forces generated internally to maintain this shape. The measurements can be used to model interactions between cyanobacteria, or with their environment, and how their collective behaviour emerges from such interactions.
Collapse
Affiliation(s)
- Mixon K. Faluweki
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
6
|
Tezuka T, Ohnishi Y. Surface structure and nanomechanical properties of Actinoplanes missouriensis sporangia analyzed via atomic force microscopy. Biosci Biotechnol Biochem 2022; 86:552-556. [PMID: 35142339 DOI: 10.1093/bbb/zbac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022]
Abstract
The surface structures of the sporangia produced by Actinoplanes missouriensis were analyzed at high resolution in air and liquid via atomic force microscopy. Results revealed a dynamic change in sporangium surface structure in response to the amount of moisture. Furthermore, the Young's modulus of the sporangium surface (1.95 ± 0.92 GPa) was calculated by analyzing the force-distance curves in air.
Collapse
Affiliation(s)
- Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Villalba M, Venturelli L, Arnal L, Masson C, Dietler G, Vela ME, Yantorno O, Kasas S. Effect of antibiotics on mechanical properties of Bordetella pertussis examined by atomic force microscopy. Micron 2022; 155:103229. [DOI: 10.1016/j.micron.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
|
8
|
Olubowale O, Biswas S, Azom G, Prather BL, Owoso SD, Rinee KC, Marroquin K, Gates KA, Chambers MB, Xu A, Garno JC. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS OMEGA 2021; 6:25860-25875. [PMID: 34660949 PMCID: PMC8515370 DOI: 10.1021/acsomega.1c03829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.
Collapse
|
9
|
Xiao Y, Cheng Y, He P, Wu X, Li Z. New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145680. [PMID: 33607435 DOI: 10.1016/j.scitotenv.2021.145680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
External layers, the outermost structures around cells, perform essential eco-physiological functions to support cyanobacteria and microalgae in aquatic environments. These layers have been recognized as adaptations to turbulence, a ubiquitous and inherent physical process occurring in the environments of most cyanobacteria and microalgae. However, the underlying biophysical mechanism of these layers is still poorly understood. Force measurements were performed directly on the external layers of eight living cyanobacterial and green algal strains in situ using atomic force microscopy (AFM). We developed a wavelet analysis method based on a multiscale decomposition of derivative force-distance curves to quantify the elastic responses of various external layers upon mechanical deformation. Such analysis has the advantages of detecting singularities and distinguishing the biomechanical contributions of each external layer. The elastic modulus of the same type of external layer follows the same statistical distribution. However, the elastic response among different types of external layers is challenged by our method, indicating the heterogeneity of the mechanical properties of inner and outer layers in multilayer strains. This discrepancy was due to the thickness and texture of each external layer, especially the chemical presence of ribose, hydroxyproline and glutamic acid. This study highlights a new way to elucidate more precise information about external layers and provides a biophysical mechanistic explanation for the functioning of the various external layers to protect cyanobacterial and microalgal cells in a turbulent environment.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuran Cheng
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Pan He
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
10
|
Schulte MF, Bochenek S, Brugnoni M, Scotti A, Mourran A, Richtering W. Stiffness Tomography of Ultra-Soft Nanogels by Atomic Force Microscopy. Angew Chem Int Ed Engl 2021; 60:2280-2287. [PMID: 33459462 PMCID: PMC7898630 DOI: 10.1002/anie.202011615] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The softness of nanohydrogels results in unique properties and recently attracted tremendous interest due to the multi-functionalization of interfaces. Herein, we study extremely soft temperature-sensitive ultra-low cross-linked (ULC) nanogels adsorbed to the solid/water interface by atomic force microscopy (AFM). The ultra-soft nanogels seem to disappear in classical imaging modes since a sharp tip fully penetrates these porous networks with very low forces in the range of steric interactions (ca. 100 pN). However, the detailed evaluation of Force Volume mode measurements allows us to resolve their overall shape and at the same time their internal structure in all three dimensions. The nanogels exhibit an extraordinary disk-like and entirely homogeneous but extremely soft structure-even softer than polymer brushes. Moreover, the temperature-sensitive nanogels can be switched on demand between the ultra-soft and a very stiff state.
Collapse
Affiliation(s)
| | - Steffen Bochenek
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Monia Brugnoni
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Andrea Scotti
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Ahmed Mourran
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
11
|
Schulte MF, Bochenek S, Brugnoni M, Scotti A, Mourran A, Richtering W. Stiffness Tomography of Ultra‐Soft Nanogels by Atomic Force Microscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Friederike Schulte
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Andrea Scotti
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Ahmed Mourran
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Walter Richtering
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| |
Collapse
|
12
|
Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020; 11:517165. [PMID: 33123004 PMCID: PMC7567160 DOI: 10.3389/fphar.2020.517165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The worldwide emergence of antimicrobial resistance (AMR) in pathogenic microorganisms, including bacteria and viruses due to a plethora of reasons, such as genetic mutation and indiscriminate use of antimicrobials, is a major challenge faced by the healthcare sector today. One of the issues at hand is to effectively screen and isolate resistant strains from sensitive ones. Utilizing the distinct nanomechanical properties (e.g., elasticity, intracellular turgor pressure, and Young’s modulus) of microbes can be an intriguing way to achieve this; while atomic force microscopy (AFM), with or without modification of the tips, presents an effective way to investigate such biophysical properties of microbial surfaces or an entire microbial cell. Additionally, advanced AFM instruments, apart from being compatible with aqueous environments—as often is the case for biological samples—can measure the adhesive forces acting between AFM tips/cantilevers (conjugated to bacterium/virion, substrates, and molecules) and target cells/surfaces to develop informative force-distance curves. Moreover, such force spectroscopies provide an idea of the nature of intercellular interactions (e.g., receptor-ligand) or propensity of microbes to aggregate into densely packed layers, that is, the formation of biofilms—a property of resistant strains (e.g., Staphylococcus aureus, Pseudomonas aeruginosa). This mini-review will revisit the use of single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy (SMFS) that are emerging as powerful additions to the arsenal of researchers in the struggle against resistant microbes, identify their strengths and weakness and, finally, prioritize some future directions for research.
Collapse
Affiliation(s)
| | | | - Óisín Owens
- School of Physics, Technological University Dublin, Dublin, Ireland
| | | |
Collapse
|
13
|
Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 2020; 11:1789. [PMID: 32286264 PMCID: PMC7156740 DOI: 10.1038/s41467-020-15489-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of the cell envelope in Gram-negative bacteria are controlled by the peptidoglycan, the outer membrane, and the proteins interacting with both layers. In Escherichia coli, the lipoprotein Lpp provides the only covalent crosslink between the outer membrane and the peptidoglycan. Here, we use single-cell atomic force microscopy and genetically engineered strains to study the contribution of Lpp to cell envelope mechanics. We show that Lpp contributes to cell envelope stiffness in two ways: by covalently connecting the outer membrane to the peptidoglycan, and by controlling the width of the periplasmic space. Furthermore, mutations affecting Lpp function substantially increase bacterial susceptibility to the antibiotic vancomycin, indicating that Lpp-dependent effects can affect antibacterial drug efficacy. Lipoprotein Lpp provides a covalent crosslink between the outer membrane and the peptidoglycan in E. coli. Here, the authors use atomic force microscopy to show that Lpp contributes to cell envelope stiffness by covalently connecting the two layers and by controlling the width of the periplasmic space.
Collapse
|
14
|
Nanostructured TiC Layer is Highly Suitable Surface for Adhesion, Proliferation and Spreading of Cells. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell culture is usually performed in 2D polymer surfaces; however, several studies are conducted with the aim to screen functional coating molecules to find substrates more suitable for cell adhesion and proliferation. The aim of this manuscript is to compare the cell adhesion and cytoskeleton organization of different cell types on different surfaces. Human primary fibroblasts, chondrocytes and osteoblasts isolated from patients undergoing surgery were seeded on polystyrene, poly-d-lysine-coated glass and titanium carbide slides and left to grow for several days. Then their cytoskeleton was analyzed, both by staining cells with phalloidin, which highlights actin fibers, and using Atomic Force Microscopy. We also monitored the production of Fibroblast Growth Factor-2, Bone Morphogenetic Protein-2 and Osteocalcin, using ELISA, and we highlighted production of Collagen type I in fibroblasts and osteoblasts and Collagen type II in chondrocytes by immunofluorescences. Fibroblasts, chondrocytes and osteoblasts showed both an improved proliferative activity and a good adhesion ability when cultured on titanium carbide slides, compared to polystyrene and poly-d-lysine-coated glass. In conclusion, we propose titanium carbide as a suitable surface to cultivate cells such as fibroblasts, chondrocytes and osteoblasts, allowing the preservation of their differentiated state and good adhesion properties.
Collapse
|
15
|
Venturelli L, Kohler AC, Stupar P, Villalba MI, Kalauzi A, Radotic K, Bertacchi M, Dinarelli S, Girasole M, Pešić M, Banković J, Vela ME, Yantorno O, Willaert R, Dietler G, Longo G, Kasas S. A perspective view on the nanomotion detection of living organisms and its features. J Mol Recognit 2020; 33:e2849. [PMID: 32227521 DOI: 10.1002/jmr.2849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.
Collapse
Affiliation(s)
- Leonardo Venturelli
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Céline Kohler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Simone Dinarelli
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Marco Girasole
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Banković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maria E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ronnie Willaert
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Stühn L, Fritschen A, Choy J, Dehnert M, Dietz C. Nanomechanical sub-surface mapping of living biological cells by force microscopy. NANOSCALE 2019; 11:13089-13097. [PMID: 31268074 DOI: 10.1039/c9nr03497h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atomic force microscopy allows for the nanomechanical surface characterization of a multitude of types of materials with highest spatial precision in various relevant environments. In recent years, researchers have refined this methodology to analyze living biological materials in vitro. The atomic force microscope thus has become an essential instrument for the (in many cases) non-destructive, high-resolution imaging of cells and visualization of their dynamic mechanical processes. Mapping force versus distance curves and the local evaluation of soft samples allow the operator to "see" beneath the sample surface and to capture the local mechanical properties. In this work, we combine atomic force microscopy with fluorescence microscopy to investigate cancerous epithelial breast cells in culture medium. With unprecedented spatial resolution, we provide tomographic images for the local elasticity of confluent layers of cells. For these particular samples, a layer of higher elastic modulus located directly beneath the cell membrane in comparison with the average elastic properties was observed. Strikingly, this layer appears to be perforated at unique locations of the sample surface of weakest mechanical properties where distinct features were visible permitting the tip to indent farthest into the cell's volume. We interpret this layer as the cell membrane mechanically supported by the components of the cytoskeleton that is populated with sites of integral membrane proteins. These proteins act as breaking points for the indenter thus explaining the mechanical weakness at these locations. In contrast, the highest mechanical strength of the cell was found at locations of the cell cores as cross-checked by fluorescence microscopy images of staining experiments, in particular at nucleoli sites as the cumulative elastic modulus there comprises cytoskeletal features and the tight packing ribosomal DNA of the cell.
Collapse
Affiliation(s)
- Lukas Stühn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| | - Anna Fritschen
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| | - Joseph Choy
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| | - Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Pellequer JL, Parot P, Navajas D, Kumar S, Svetličić V, Scheuring S, Hu J, Li B, Engler A, Sousa S, Lekka M, Szymoński M, Schillers H, Odorico M, Lafont F, Janel S, Rico F. Fifteen years of Servitude et Grandeur
to the application of a biophysical technique in medicine: The tale of AFMBioMed. J Mol Recognit 2018; 32:e2773. [DOI: 10.1002/jmr.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Daniel Navajas
- Institute for Bioengineering of Catalonia and CIBER de Enfermedades Respiratorias; Universitat de Barcelona; Barcelona Spain
| | - Sanjay Kumar
- Departments of Bioengineering and Chemical & Biomolecular Engineering; University of California, Berkeley; Berkeley California USA
| | | | - Simon Scheuring
- Department of Anesthesiology, Department of Physiology and Biophysics; Weill Cornell Medicine; New York City New York USA
| | - Jun Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Bin Li
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; Shanghai China
- Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Adam Engler
- Department of Bioengineering; University of California San Diego; La Jolla California USA
| | - Susana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto Portugal
- ISEP-Instituto Superior de Engenharia; Politécnico do Porto; Portugal
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences; Kraków Poland
| | - Marek Szymoński
- Center for Nanometer-scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science; Jagiellonian University; Kraków Poland
| | | | - Michael Odorico
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ Montpellier, Marcoule; Montpellier France
| | - Frank Lafont
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Sebastien Janel
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Univ Lille; Lille France
| | - Felix Rico
- LAI, U1067, Aix-Marseille Univ, CNRS, INSERM; Marseille France
| |
Collapse
|
18
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
19
|
Atomic force microscopy methodology and AFMech Suite software for nanomechanics on heterogeneous soft materials. Nat Commun 2018; 9:3584. [PMID: 30181577 PMCID: PMC6123404 DOI: 10.1038/s41467-018-05902-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atomic force microscopy has proven to be a valuable technique to characterize the mechanical and morphological properties of heterogeneous soft materials such as biological specimens in liquid environment. Here we propose a 3-step method in order to investigate biological specimens where heterogeneity hinder a quantitative characterization: (1) precise AFM calibration, (2) nano-indentation in force volume mode, (3) array of finite element simulations built from AFM indentation events. We combine simulations to determine internal geometries, multi-layer material properties, and interfacial friction. In order to easily perform this analysis from raw AFM data to simulation comparison, we propose a standalone software, AFMech Suite comprising five interacting interfaces for simultaneous calibration, morphology, adhesion, mechanical, and simulation analysis. We test the methodology on soft hydrogels with hard spherical inclusions, as a soft-matter model system. Finally, we apply the method on E. coli bacteria supported on soft/hard hydrogels to prove usefulness in biological field. Atomic force microscopy is an indispensable method in characterizing soft materials but the complexity of biological samples makes reproducible measurements difficult. Here the authors use a 3-step method to investigate biological specimens in which vertical and lateral heterogeneity hinders a precise quantitative characterization.
Collapse
|
20
|
Mathelié-Guinlet M, Grauby-Heywang C, Martin A, Février H, Moroté F, Vilquin A, Béven L, Delville MH, Cohen-Bouhacina T. Detrimental impact of silica nanoparticles on the nanomechanical properties of Escherichia coli, studied by AFM. J Colloid Interface Sci 2018; 529:53-64. [PMID: 29883930 DOI: 10.1016/j.jcis.2018.05.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Despite great innovative and technological promises, nanoparticles (NPs) can ultimately exert an antibacterial activity by affecting the cell envelope integrity. This envelope, by conferring the cell its rigidity and protection, is intimately related to the mechanical behavior of the bacterial surface. Depending on their size, surface chemistry, shape, NPs can induce damages to the cell morphology and structure among others, and are therefore expected to alter the overall mechanical properties of bacteria. Although Atomic Force Microscopy (AFM) stands as a powerful tool to study biological systems, with high resolution and in near physiological environment, it has rarely been applied to investigate at the same time both morphological and mechanical degradations of bacteria upon NPs treatment. Consequently, this study aims at quantifying the impact of the silica NPs (SiO2-NPs) on the mechanical properties of E. coli cells after their exposure, and relating it to their toxic activity under a critical diameter. Cell elasticity was calculated by fitting the force curves with the Hertz model, and was correlated with the morphological study. SiO2-NPs of 100 nm diameter did not trigger any significant change in the Young modulus of E. coli, in agreement with the bacterial intact morphology and membrane structure. On the opposite, the 4 nm diameter SiO2-NPs did induce a significant decrease in E. coli Young modulus, mainly associated with the disorganization of lipopolysaccharides in the outer membrane and the permeation of the underlying peptidoglycan layer. The subsequent toxic behavior of these NPs is finally confirmed by the presence of membrane residues, due to cell lysis, exhibiting typical adhesion features.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France; Univ. Bordeaux, CNRS, ICMCB, UMR5026, 87 avenue du Dr Albert Schweitzer, 33608 Pessac, France
| | | | - Axel Martin
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Hugo Février
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Fabien Moroté
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Alexandre Vilquin
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Laure Béven
- Univ. Bordeaux, INRA, UMR 1332 Biologie du Fruit et Pathologie, 33882 Villenave-d'Ornon, France
| | - Marie-Hélène Delville
- Univ. Bordeaux, CNRS, ICMCB, UMR5026, 87 avenue du Dr Albert Schweitzer, 33608 Pessac, France.
| | | |
Collapse
|
21
|
Milani P, Chlasta J, Abdayem R, Kezic S, Haftek M. Changes in nano-mechanical properties of human epidermal cornified cells depending on their proximity to the skin surface. J Mol Recognit 2018; 31:e2722. [DOI: 10.1002/jmr.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Rawad Abdayem
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
- L'Oréal, R&I, Aulnay sous Bois; France
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Marek Haftek
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
| |
Collapse
|
22
|
Angeloni L, Reggente M, Passeri D, Natali M, Rossi M. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1521. [PMID: 29665287 DOI: 10.1002/wnan.1521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Melania Reggente
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Natali
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy.,Research Center for Nanotechnology Applied to Engineering of Sapienza University of Rome (CNIS), Rome, Italy
| |
Collapse
|
23
|
Dinarelli S, Girasole M, Longo G. Methods for Atomic Force Microscopy of Biological and Living Specimens. Methods Mol Biol 2018; 1814:529-539. [PMID: 29956253 DOI: 10.1007/978-1-4939-8591-3_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two main precautions must be taken into account to obtain high-resolution morphological and nanomechanical characterization of biological specimens with an atomic force microscope: the tip-sample interaction and the sample-substrate adhesion. In this chapter we discuss the necessary steps for a correct preparation of three types of biological samples: erythrocytes, bacteria, and osteoblasts. The main goal is to deliver reproducible protocols to produce good cellular adhesion and minimizing the morphological alterations of the specimens.
Collapse
Affiliation(s)
- Simone Dinarelli
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy
| | - Marco Girasole
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy
| | - Giovanni Longo
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy.
| |
Collapse
|
24
|
AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 2018; 73:177-187. [DOI: 10.1016/j.semcdb.2017.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
|
25
|
Pillet F, Gibot L, Madi M, Rols MP, Dague E. Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication 2017; 9:025017. [PMID: 28493850 DOI: 10.1088/1758-5090/aa6ed5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we characterized the physical properties of a single cell type growing in configurations of increasing complexity. From one human skin biopsy, primary dermal fibroblasts were isolated and seeded to give monolayer (2D model), spheroid (3D model poor in extracellular matrix) and tissue-engineered cell sheet (3D model rich in endogenous extracellular matrix). Living native human dermis tissue was used as a gold standard. Nanomechanical and viscoelastic properties at the cell scale were measured by atomic force microscopy (AFM) while biphoton microscopy allowed collagen detection by second harmonic generation and scanning electron microscopy helped in model morphological characterization. In all models, fibroblasts presented a similar typical elongated cell shape, with a cytoskeleton well-arranged along the long axis of the cell. However, elastic moduli of the tissue-engineered cell sheet and native dermis tissue were similar and statistically lower than monolayer and spheroid models. We successfully carried out AFM force measurements on 3D models such as spheroids and tissue-engineered cell sheets, as well as on living native human tissue. We demonstrated that a tissue-engineered dermal model recapitulates the mechanical properties of human native dermal tissue unlike the classically used monolayer and spheroid models. Furthermore, we give statistical evidence to indicate a correlation between cell mechanical properties and the presence of collagens in the models studied.
Collapse
Affiliation(s)
- Flavien Pillet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | | | | |
Collapse
|
26
|
Li Q, Sand W. Mechanical and chemical studies on EPS from Sulfobacillus thermosulfidooxidans : from planktonic to biofilm cells. Colloids Surf B Biointerfaces 2017; 153:34-40. [DOI: 10.1016/j.colsurfb.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/28/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
|
27
|
Smolyakov G, Formosa-Dague C, Severac C, Duval R, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016; 85:8-14. [DOI: 10.1016/j.micron.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
|
28
|
Dinarelli S, Girasole M, Kasas S, Longo G. Nanotools and molecular techniques to rapidly identify and fight bacterial infections. J Microbiol Methods 2016; 138:72-81. [PMID: 26806415 DOI: 10.1016/j.mimet.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Reducing the emergence and spread of antibiotic-resistant bacteria is one of the major healthcare issues of our century. In addition to the increased mortality, infections caused by multi-resistant bacteria drastically enhance the healthcare costs, mainly because of the longer duration of illness and treatment. While in the last 20years, bacterial identification has been revolutionized by the introduction of new molecular techniques, the current phenotypic techniques to determine the susceptibilities of common Gram-positive and Gram-negative bacteria require at least two days from collection of clinical samples. Therefore, there is an urgent need for the development of new technologies to determine rapidly drug susceptibility in bacteria and to achieve faster diagnoses. These techniques would also lead to a better understanding of the mechanisms that lead to the insurgence of the resistance, greatly helping the quest for new antibacterial systems and drugs. In this review, we describe some of the tools most currently used in clinical and microbiological research to study bacteria and to address the challenge of infections. We discuss the most interesting advancements in the molecular susceptibility testing systems, with a particular focus on the many applications of the MALDI-TOF MS system. In the field of the phenotypic characterization protocols, we detail some of the most promising semi-automated commercial systems and we focus on some emerging developments in the field of nanomechanical sensors, which constitute a step towards the development of rapid and affordable point-of-care testing devices and techniques. While there is still no innovative technique that is capable of completely substituting for the conventional protocols and clinical practices, many exciting new experimental setups and tools could constitute the basis of the standard testing package of future microbiological tests.
Collapse
Affiliation(s)
- S Dinarelli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - M Girasole
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - S Kasas
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Physique de la Matière Vivante, Lausanne, Switzerland; Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, Switzerland
| | - G Longo
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
29
|
Sensitizing Pseudomonas aeruginosa to antibiotics by electrochemical disruption of membrane functions. Biomaterials 2015; 74:267-79. [PMID: 26461119 DOI: 10.1016/j.biomaterials.2015.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022]
Abstract
Recently, we reported synergistic effects between 70 μA/cm(2) direct current and tobramycin in killing Pseudomonas aeruginosa PAO1 persister cells, a phenomenon we named electrochemical control of persister cells (ECCP; Niepa et al. Biomaterials 33: 7356-7365, 2012). To understand the mechanism of ECCP, the effects of electrochemical treatments mediated via stainless steel 304 and carbon electrodes on P. aeruginosa PAO1 were systematically compared using complementary approaches in this study. Electron microscopic analysis revealed that μA/cm(2) level direct current (DC) caused substantial changes in the structure and membrane integrity of P. aeruginosa PAO1 cells. DC treatments using SS304 electrodes induced cell lysis, while the same level of DC generated using carbon electrodes led to aggregation of intracellular proteins and increased permeabilization of P. aeruginosa PAO1 cells to antibiotics. The profound effects of DC on the physiology of persister cells were corroborated with DNA microarray analysis, which revealed the induction of genes associated with pyocin production and SOS response in DC-treated persister cells. Interestingly, sequential treatment using DC mediated with carbon electrodes followed by tobramycin was found more effective than concurrent treatment; and total eradication of persister cells was achieved.
Collapse
|
30
|
Abou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine 2015; 10:6371-94. [PMID: 26504385 PMCID: PMC4605240 DOI: 10.2147/ijn.s86033] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
| | - Laurent Bozec
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
| | - Roman A Perez
- Institute of Tissue Regenerative Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regenerative Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
31
|
Herrmann A, Sieben C. Single-virus force spectroscopy unravels molecular details of virus infection. Integr Biol (Camb) 2015; 7:620-32. [PMID: 25923471 DOI: 10.1039/c5ib00041f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Virus infection is a multistep process that has significant effects on the structure and function of both the virus and the host cell. The first steps of virus replication include cell binding, entry and release of the viral genome. Single-virus force spectroscopy (SVFS) has become a promising tool to understand the molecular details of those steps. SVFS data complemented by biochemical and biophysical, including theoretical modeling approaches provide valuable insights into molecular events that accompany virus infection. Properties of virus-cell interaction as well as structural alterations of the virus essential for infection can be investigated on a quantitative level. Here we review applications of SVFS to virus binding, structure and mechanics. We demonstrate that SVFS offers unexpected new insights not accessible by other methods.
Collapse
Affiliation(s)
- Andreas Herrmann
- Humboldt-Universität zu Berlin, Institut für Biologie, Molekulare Biophysik, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | |
Collapse
|
32
|
Aguayo S, Donos N, Spratt D, Bozec L. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. NANOTECHNOLOGY 2015; 26:062001. [PMID: 25598514 DOI: 10.1088/0957-4484/26/6/062001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | |
Collapse
|
33
|
Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Biophys J 2014; 106:1033-43. [PMID: 24606928 DOI: 10.1016/j.bpj.2013.12.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 12/21/2022] Open
Abstract
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements.
Collapse
|
34
|
Benitez R, Toca-herrera JL. Looking at cell mechanics with atomic force microscopy: Experiment and theory. Microsc Res Tech 2014; 77:947-58. [DOI: 10.1002/jemt.22419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Rafael Benitez
- Department of Mathematics; University Center of Plasencia, University of Extremadura, Avda. Virgen del Puerto 2; 10600 Plasencia Spain
| | - José. L. Toca-herrera
- Institute for Biophysics, Department of Nanobiotechnology; University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11; 1190 Vienna Austria
| |
Collapse
|
35
|
Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 2014; 32:381-8. [PMID: 24856959 DOI: 10.1016/j.tibtech.2014.04.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/25/2023]
Abstract
The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems.
Collapse
Affiliation(s)
| | - Eva Potthoff
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dario Ossola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute for Technology, Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
36
|
Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:230-44. [PMID: 24616433 DOI: 10.1002/wnan.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Collapse
Affiliation(s)
- Giovanni Longo
- Ecole Polytechnique Fédérale de Lausanne, LPMV, Lausanne, Switzerland; Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
37
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
38
|
Antibiotic-induced modifications of the stiffness of bacterial membranes. J Microbiol Methods 2013; 93:80-4. [DOI: 10.1016/j.mimet.2013.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 11/23/2022]
|
39
|
Dhahri S, Ramonda M, Marlière C. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization. PLoS One 2013; 8:e61663. [PMID: 23593493 PMCID: PMC3625152 DOI: 10.1371/journal.pone.0061663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.
Collapse
Affiliation(s)
- Samia Dhahri
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
| | - Michel Ramonda
- Centrale de Technologie en Micro et nanoélectronique, Laboratoire de Microscopie en Champ Proche, University Montpellier 2, Montpellier, France
| | - Christian Marlière
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
- Institut des Sciences Moléculaires d'Orsay, University Paris-Sud, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
40
|
Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 2013; 48:26-33. [PMID: 23522742 DOI: 10.1016/j.micron.2013.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Since the last 10 years, AFM has become a powerful tool to study biological samples. However, the classical modes offered (imaging or tapping mode) often damage sample that are too soft or loosely immobilized. If imaging and mechanical properties are required, it requests long recording time as two different experiments must be conducted independently. In this study we compare the new QI™ mode against contact imaging mode and force volume mode, and we point out its benefit in the new challenges in biology on six different models: Escherichia coli, Candida albicans, Aspergillus fumigatus, Chinese hamster ovary cells and their isolated nuclei, and human colorectal tumor cells.
Collapse
|
41
|
Kasas S, Radotic K, Longo G, Saha B, Alonso-Sarduy L, Dietler G, Roduit C. A universal fluid cell for the imaging of biological specimens in the atomic force microscope. Microsc Res Tech 2013; 76:357-63. [PMID: 23390022 DOI: 10.1002/jemt.22174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/30/2012] [Indexed: 11/06/2022]
Abstract
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|