1
|
Analysis of Proteins and Peptides of Highly Purified CD9 + and CD63 + Horse Milk Exosomes Isolated by Affinity Chromatography. Int J Mol Sci 2022; 23:ijms232416106. [PMID: 36555744 PMCID: PMC9788572 DOI: 10.3390/ijms232416106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Exosomes are nanovesicles with a 40-150 nm diameter and are essential for communication between cells. Literature data suggest that exosomes obtained from different sources (cell cultures, blood plasma, urea, saliva, tears, spinal fluid, milk) using a series of centrifugations and ultracentrifugations contain hundreds and thousands of different protein and nucleic acid molecules. However, most of these proteins are not an intrinsic part of exosomes; instead, they co-isolate with exosomes. Using consecutive ultracentrifugation, gel filtration, and affinity chromatography on anti-CD9- and anti-CD63-Sepharoses, we isolated highly purified vesicle preparations from 18 horse milk samples. Gel filtration of the initial preparations allowed us to remove co-isolating proteins and their complexes and to obtain highly purified vesicles morphologically corresponding to exosomes. Using affinity chromatography on anti-CD9- and anti-CD63-Sepharoses, we obtained extra-purified CD9+ and CD63+ exosomes, which simultaneously contain these two tetraspanins, while the CD81 tetraspanin was presented in a minor quantity. SDS-PAGE and MALDI analysis detected several major proteins with molecular masses over 10 kDa: CD9, CD63, CD81, lactadherin, actin, butyrophilin, lactoferrin, and xanthine dehydrogenase. Analysis of extracts by trifluoroacetic acid revealed dozens of peptides with molecular masses in the range of 0.8 to 8.5 kDa. Data on the uneven distribution of tetraspanins on the surface of horse milk exosomes and the presence of peptides open new questions about the biogenesis of these extracellular vesicles.
Collapse
|
2
|
Protease and DNase Activities of a Very Stable High-Molecular-Mass Multiprotein Complex from Sea Cucumber Eupentacta fraudatrix. Int J Mol Sci 2022; 23:ijms23126677. [PMID: 35743119 PMCID: PMC9224385 DOI: 10.3390/ijms23126677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Only some human organs, including the liver, are capable of very weak self-regeneration. Some marine echinoderms are very useful for studying the self-regeneration processes of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix (holothurians) demonstrate complete restoration of all organs and the body within several weeks after their division into two parts. Therefore, these cucumbers are a prospective model for studying the general mechanisms of self-regeneration. However, there is no data available yet concerning biomolecules of holothurians, which can stimulate the processes of organ and whole-body regeneration. Investigation of these restoration mechanisms is very important for modern medicine and biology because it can help to understand which hormones, nucleic acids, proteins, enzymes, or complexes play an essential role in self-regeneration. It is possible that stable, polyfunctional, high-molecular-weight protein complexes play an essential role in these processes. It has recently been shown that sea cucumbers Eupentacta fraudatrix contain a very stable multiprotein complex of about 2000 kDa. The first analysis of possible enzymatic activities of a stable protein complex was carried out in this work, revealing that the complex possesses several protease and DNase activities. The complex metalloprotease is activated by several metal ions (Zn2+ > Mn2+ > Mg2+). The relative contribution of metalloproteases (~63.4%), serine-like protease (~30.5%), and thiol protease (~6.1%) to the total protease activity of the complex was estimated. Metal-independent proteases of the complex hydrolyze proteins at trypsin-specific sites (after Lys and Arg). The complex contains both metal-dependent and metal-independent DNases. Mg2+, Mn2+, and Co2+ ions were found to strongly increase the DNase activity of the complex.
Collapse
|
3
|
Comparison of the Content of Several Elements in Seawater, Sea Cucumber Eupentacta fraudatrix and Its High-Molecular-Mass Multiprotein Complex. Molecules 2022; 27:molecules27061958. [PMID: 35335321 PMCID: PMC8951014 DOI: 10.3390/molecules27061958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Metal ions and other elements play many different critical roles in all biological processes. They can be especially important in high concentrations for the functioning of organisms living in seawater. It is important to understand how much the concentrations of different trace elements in such organisms can be higher than in seawater. Some marine organisms capable of rapid recovery after different injuries are fascinating in this regard. Sea cucumbers Eupentacta fraudatrix can completely restore all organs and the whole body within several weeks after their division into two parts. Here, for the first time, a comparison of the content of different elements in seawater, sea cucumber, and its very stable multiprotein complex (2000 kDa) was performed using two-jet plasma atomic emission spectrometry. Among the 18 elements we found in sea cucumbers, seawater contained only six elements in detectable amounts, and their content decreased in the following order: Mg > Ca > B > Sr ≈ Si > Cr (0.13−930 µg/g of seawater). The content of these elements in sea cucumbers was higher compared with seawater (-fold): Ca (714) > Sr (459) > Cr (75) > Si (42)> B (12) > Mg (6.9). Only four of them had a higher concentration in the protein complex than in seawater (-fold): Si (120.0) > Cr (31.5) > Ca (9.1) > Sr (8.8). The contents of Mg and B were lower in the protein complex than in seawater. The content of elements additionally found in sea cucumbers decreased in the order (µg/g of powder) of P (1100) > Fe (47) > Mn (26) > Ba (15) > Zn (13) > Al (9.3) > Mo (2.8) > Cu (1.4) > Cd (0.3), and in the protein complex, in the order of P (290) > Zn (51) > Fe (23) > Al (14) ≈ Ni (13) > Cu (7.5) > Ba (2.5) ≈ Co (2.0) ≈ Mn (1.6) > Cd (0.7) >Ag (0.2). Thus, sea cucumbers accumulate various elements, including those contained in very low concentrations in seawater. The possible biological roles of these elements are discussed here.
Collapse
|
4
|
Very Stable Two Mega Dalton High-Molecular-Mass Multiprotein Complex from Sea Cucumber Eupentacta fraudatrix. Molecules 2021; 26:molecules26185703. [PMID: 34577173 PMCID: PMC8470729 DOI: 10.3390/molecules26185703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
In contrast to many human organs, only the human liver can self-regenerate, to some degree. Some marine echinoderms are convenient objects for studying the processes of regenerations of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix can completely restore within several weeks, the internal organs and the whole body after their division into two or three parts. Therefore, these cucumbers are a very convenient model for studying the general mechanisms of regeneration. However, there is no literature data yet on which biomolecules of these cucumbers can stimulate the regeneration of organs and the whole-body processes. Studying the mechanisms of restoration is very important for modern biology and medicine, since it can help researchers to understand which proteins, enzymes, hormones, or possible complexes can play an essential role in regeneration. This work is the first to analyze the possible content of very stable protein complexes in sea cucumbers Eupentacta fraudatrix. It has been shown that their organisms contain a very stable multiprotein complex of about 2000 kDa. This complex contains 15 proteins with molecular masses (MMs) >10 kDa and 21 small proteins and peptides with MMs 2.0–8.6 kDa. It is effectively destroyed only in the presence of 3.0 M MgCl2 and, to a lesser extent, 3.0 M NaCl, while the best dissociation occurs in the presence of 8.0 M urea + 0.1 M EDTA. Our data indicate that forming a very stable proteins complex occurs due to the combination of bridges formed by metal ions, electrostatic contacts, and hydrogen bonds.
Collapse
|
5
|
Sedykh SE, Purvinish LV, Burkova EE, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Nevinsky GA. Analysis of peptides and small proteins in preparations of horse milk exosomes, purified on anti-CD81-Sepharose. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Comparison of Trace Elements in High-Molecular-Mass Multiprotein Complex and in Female Milk from Which It Was Obtained. ScientificWorldJournal 2020; 2019:2578975. [PMID: 31467495 PMCID: PMC6699245 DOI: 10.1155/2019/2578975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Many biological processes are performed by different protein complexes. During the association of proteins and enzymes forming specific complexes, the latter can include ions of various metal ions, which may be important for their formation and biological function. Objective of the Studies However, to date in the literature there are no data on metal ions that are part of any protein complexes. Methods A very stable multiprotein complex (~1000±100 kDa) was separated from other proteins of nine samples of female milk by gel filtration on Sepharose 4B. The content of microelements in the stable multiprotein complex and milk was analyzed using two-jet plasma atomic emission spectrometry. Results The content of different elements in milk on average decreased in the order: Ca>P>Mg>Al≥Zn≥Fe>Cu >B (0.76–3500 μg/g of dry milk powder), while the content of some elements was very low (Sr>Mn>Cr>Ba>Pb>Ag>Ni>Cd, <0.03–0.5 μg/g). The content of eight elements in stable multiprotein complex was 1.2-9.6-fold higher than in milk and increased in the order: Ca≈Mg<P<Al<Fe<Pb<Ba<Cr<Cd<Zn, while content of SPC eight metals was 12.3-110-fold higher: Cu (12.3)>B (19.7)>Ag (28.7)>Ni (38)≥Sr (110). Conclusions The analysis of the relative content of sixteen elements in human milk and oligomeric complexes of proteins was performed for the first time. Data on the content of metals indicate that during the formation of protein which associates the increase in the content of metal ions bound with proteins of the complex can occur. Such metal ions can be important for the formation and biological function of protein complexes.
Collapse
|
7
|
Burkova EE, Grigor'eva AE, Bulgakov DV, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Sedykh SE, Nevinsky GA. Extra Purified Exosomes from Human Placenta Contain An Unpredictable Small Number of Different Major Proteins. Int J Mol Sci 2019; 20:E2434. [PMID: 31100946 PMCID: PMC6566543 DOI: 10.3390/ijms20102434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are nanovesicles (30-100 nm) containing various RNAs and different proteins. Exosomes are important in intracellular communication, immune function, etc. Exosomes from different sources including placenta were mainly obtained by different types of centrifugation and ultracentrifugations and were reported to contain from a few dozen to thousands of different proteins. First crude exosome preparations from four placentas (normal pregnancy) were obtained here using several standard centrifugations but then were additionally purified by gel filtration on Sepharose 4B. Individual preparations demonstrated different gel filtration profiles showing good or bad separation of exosome peaks from two peaks of impurity proteins and their complexes. According to electron microscopy, exosomes before gel filtration contain vesicles of different size, ring-shaped structures forming by ferritin and clusters of aggregated proteins and their complexes. After filtration through 220 nm filters and gel filtration exosomes display typically for exosome morphology and size (30-100 nm) and do not contain visible protein admixtures. Identification of exosome proteins was carried out by MS and MS/MS MALDI mass spectrometry of proteins' tryptic hydrolyzates after their SDS-PAGE and 2D electrophoresis. We have obtained unexpected results. Good, purified exosomes contained only 11-13 different proteins: CD9, CD81, CD-63, hemoglobin subunits, interleukin-1 receptor, annexin A1, annexin A2, annexin A5, cytoplasmic actin, alkaline phosphatase, serotransferin, and probably human serum albumin and immunoglobulins. We assume that a possible number of exosome proteins found previously using crude preparations may be very much overestimated. Our data may be important for study of biological functions of pure exosomes.
Collapse
Affiliation(s)
- Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Alina E Grigor'eva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., 690022 Vladivostok, Russia.
| | - Valentin V Vlassov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Elena I Ryabchikova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
8
|
Alinovskaya LI, Sedykh SE, Ivanisenko NV, Soboleva SE, Nevinsky GA. How human serum albumin recognizes DNA and RNA. Biol Chem 2018; 399:347-360. [PMID: 29252186 DOI: 10.1515/hsz-2017-0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022]
Abstract
We show here for the first time that HSA possesses two nucleic acid-(NA) binding sites and we estimated the relative contributions of the nucleotide links of (pN)n to their total affinity for these binding sites with higher and lower affinity for NAs. The minimal ligands of these binding sites are orthophosphate (Kd=3.0 and 20.0 mm), various dNMPs (5.6-400 μm and 0.063-18 mm) and different rNMPs (4.9-30 μm and 14-250 μm). Maximal contribution to the total affinity of all NAs to the first and second sites was observed for one nucleotide and was remarkably lower for three additional nucleotide units of (pN)n (n=1-4) with a significant decrease in the contribution at n=5-6, and at n≥7-8 all dependencies reached plateaus. For d(pA)n and r(pA)n a relatively gradual decrease in the contribution to the affinity at n=1-6 was observed, while several d(pN)n, demonstrated a sharp increase in the contribution at n=2-4. Finally, all (pN)n>10 demonstrated high affinity for the first (1.4-150 nm) and the second (80-2400 nm) sites of HSA. Double-stranded NAs showed significantly lower affinity comparing with single-stranded ligands. The thermodynamic parameters characterizing the specific contribution of every nucleotide link of all (pN)1-9 (ΔG°) to their total affinity for HSA were estimated.
Collapse
Affiliation(s)
- Ludmila I Alinovskaya
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Nikita V Ivanisenko
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Burkova EE, Dmitrenok PS, Bulgakov DV, Vlassov VV, Ryabchikova EI, Nevinsky GA. Exosomes from human placenta purified by affinity chromatography on sepharose bearing immobilized antibodies against CD81 tetraspanin contain many peptides and small proteins. IUBMB Life 2018; 70:1144-1155. [PMID: 30277306 DOI: 10.1002/iub.1928] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are nanovesicles (40-100 nm) containing various RNAs and different proteins. Exosomes are involved in intracellular communication and immune system function. Exosomes from different sources are usually isolated using standard methods-centrifugation and ultracentrifugations. Exosomes isolated by these procedures were reported to contain from a few dozen to thousands of different proteins. Here crude vesicle preparations from five placentas (normal pregnancy) were first obtained using standard centrifugation procedures. According to electron-microscopic studies, these preparations contained vesicles of different size (30-225 nm), particles of round shape of average electron density ("nonvesicles" 20-40 nm) (A), structured clusters of associated proteins and shapeless aggregations (B), as well as ring-shaped 10-14 nm structures formed by ferritin (C). After additional purification of the vesicle preparations by gel filtration on Sepharose 4B, the main part of protein structures was removed; however, the preparations still contained small admixtures of components A-C. Further purification of the preparations by affinity chromatography on Sepharose bearing immobilized antibodies against exosome surface protein CD81 led to isolation of highly purified exosomes (40-100 nm). These exosomes according to electron microscopy data contained tetraspanin embedded in the membrane, which was stained with antibodies against CD81 conjugated with 10-12 nm gold nanoparticles. SDS-PAGE and MALDI MS and MS/MS mass spectrometry of tryptic hydrolysates of proteins contained in these exosomes revealed eleven major proteins (>10 kDa): hemoglobin subunits, CD81, interleukin-1 receptor, annexin A5, cytoplasmic actin, alpha-actin-4, alkaline phosphatase, human serum albumin, serotransferrin, and lactotrasferrin. Using MALDI mass analysis of the highly purified exosomes, we for the first time found that in addition to the large proteins (>10 kDa), exosomes having affinity to CD81 contain more than 27 different peptides and small proteins of 2-10 kDa. This finding can be useful for revealing biological functions of pure exosomes. © 2018 IUBMB Life, 70(11):1144-1155, 2018.
Collapse
Affiliation(s)
- Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valentin V Vlassov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Elena I Ryabchikova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
10
|
Soboleva SE, Burkova EE, Dmitrenok PS, Bulgakov DV, Menzorova NI, Buneva VN, Nevinsky GA. Extremely stable high molecular mass soluble multiprotein complex from eggs of sea urchin Strongylocentrotus intermedius with phosphatase activity. J Mol Recognit 2018; 31:e2753. [PMID: 30109746 DOI: 10.1002/jmr.2753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
It was proposed that most biological processes are performed by different protein complexes. In contrast to individual proteins and enzymes, their complexes usually have other biological functions, and their formation may be important system process for the expansion of diversity and biological functions of different molecules. Identification and characterization of embryonic components including proteins and their multiprotein complexes seem to be very important for an understanding of embryo function. We have isolated and analyzed for the first time a very stable multiprotein complex (SPC; approximately 1100 kDa) from the soluble fraction of extracts of the sea urchin embryos. By fast protein liquid chromatography (FPLC) gel filtration the SPC was well separated from other extract proteins. Stable multiprotein complex is stable in different drastic conditions but dissociates moderately in the presence of 8M urea + 1.0M NaCl. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis data, this complex contains many major, moderate and minor proteins with molecular masses from 10 to 95 kDa. The SPC was destroyed by 8M urea or SDS, and its components were separated using thin layer chromatography, ion-exchange chromatography, gel filtration, and reverse phase chromatography. Using matrix-assisted laser desorption/ionization mass spectrometry of partially dissociated SPC, it was shown that the complex contains not only proteins (10-95 kDa) but also few dozens of peptides with molecular masses from 2 to 9.5 kDa. Short peptides form very strong complexes, which at the treatment of SPC with urea or SDS can be partially break down into smaller complexes having different peptide compositions. Reverse phase chromatography of these complexes after all type of abovementioned chromatographies led to detection from 6 to 11 distinct peaks corresponding to new complexes containing up to a few dozens of peptides. The SPCs possess alkaline phosphatase activity. Progress in the study of embryos protein complexes can help to understand their biological functions.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Dmitrii V Bulgakov
- Far Eastern Branch of Russian Academy of Sciences, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Vladivostok, Russia
| | - Natalia I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Valentina N Buneva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Using MALDI-TOF MS coupled with a high-mass detector to directly analyze intact proteins in thyroid tissues. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9230-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Sedykh SE, Purvinish LV, Monogarov AS, Burkova EE, Grigor'eva AE, Bulgakov DV, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Nevinsky GA. Purified horse milk exosomes contain an unpredictable small number of major proteins. BIOCHIMIE OPEN 2017; 4:61-72. [PMID: 29450143 PMCID: PMC5801828 DOI: 10.1016/j.biopen.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/23/2017] [Indexed: 01/05/2023]
Abstract
Exosomes are 40-100 nm nanovesicles containing RNA and different proteins. Exosomes containing proteins, lipids, mRNAs, and microRNAs are important in intracellular communication and immune function. Exosomes from different sources are usually obtained by combination of centrifugation and ultracentrifugation and according to published data can contain from a few dozens to thousands of different proteins. Crude exosome preparations from milk of eighteen horses were obtained for the first time using several standard centrifugations. Exosome preparations were additionally purified by FPLC gel filtration. Individual preparations demonstrated different profiles of gel filtration showing well or bad separation of exosome peaks and one or two peaks of co-isolating proteins and their complexes. According to the electron microscopy, well purified exosomes displayed a typical exosome-like size (30-100 nm) and morphology. It was shown that exosomes may have several different biological functions, but detection of their biological functions may vary significantly depending on the presence of exosome contaminating proteins and proteins directly into exosomes. Exosome proteins were identified before and after gel filtration by MALDI MS and MS/MS spectrometry of protein tryptic hydrolyzates derived by SDS PAGE and 2D electrophoresis. The results of protein identification were unexpected: one or two peaks co-isolating proteins after gel-filtration mainly contained kappa-, beta-, alpha-S1-caseins and its precursors, but these proteins were not found in well-purified exosomes. Well-purified exosomes contained from five to eight different major proteins: CD81, CD63 receptors, beta-lactoglobulin and lactadherin were common to all preparations, while actin, butyrophilin, lactoferrin, and xanthine dehydrogenase were found only in some of them. The article describes the morphology and the protein content of major horse milk exosomes for the first time. Our results on the decrease of major protein number identified in exosomal preparations after gel filtration may be important to the studies of biological functions of pure exosomes.
Collapse
Affiliation(s)
- Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Lada V. Purvinish
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Artem S. Monogarov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alina E. Grigor'eva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitrii V. Bulgakov
- Institute of Biology and Soil, Far East Division, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Pavel S. Dmitrenok
- Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Valentin V. Vlassov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Elena I. Ryabchikova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|