1
|
Kaewnu K, Kongkaew S, Unajak S, Hoihuan A, Jaengphop C, Kanatharana P, Thavarungkul P, Limbut W. A reusable screen-printed carbon electrode-based aptasensor for the determination of chloramphenicol in food and environment samples. Talanta 2024; 273:125857. [PMID: 38490024 DOI: 10.1016/j.talanta.2024.125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.
Collapse
Affiliation(s)
- Krittapas Kaewnu
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supatinee Kongkaew
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Atittaya Hoihuan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Chutikarn Jaengphop
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand; Kasetsart Vaccines and Biologics Innovation Centre, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Bahavarnia F, Baghban HN, Eskandani M, Hasanzadeh M. Microfluidic paper-based colorimetric quantification of malondialdehyde using silver nanoprism toward on-site biomedical analysis: a new platform for the chemical sensing and biosensing of oxidative stress. RSC Adv 2023; 13:30499-30510. [PMID: 37854491 PMCID: PMC10580143 DOI: 10.1039/d3ra06191d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Malondialdehyde (MDA) is a critical product of polyunsaturated adipose acid peroxidation and represents a common biomarker of oxidative stress. The effect of different MDA concentrations on human biofluids reflects pathological changes, which has been seen in diverse types of sickness, such as leukemia, diabetes, cancer, cardiovascular disease, and age-related macular degeneration and liver disease. In this study, different types of silver nanoparticles, including silver nanoprism (AgNPrs), silver nanowires (AgNWs), and silver nanospheres (AgNSs), were synthesized and used for the chemosensing of MDA by colorimetric and spectrophotometric methods. Colorimetric tests were performed to identify malondialdehyde in the solution as well as the one-droplet-based microfluidic paper substrate as a miniaturization device for the monitoring of analytes in human real samples. The analytical quantification of the MDA was done using the UV-Vis method. Also, the utilization of the designed chemosensor for the analysis of MDA in real sample was evaluated in human urine samples. Using the spectrophotometric method, MDA was deformed in the linear range of 0.01192 to 1.192 mM with a low limit of quantification of 0.12 μM. Essential significant features of this study include the first application of AgNPrs with high stability and great optical properties without any reagent as an optical sensing probe of MDA and optimized OD-μPCD toward on-site and on-demand MDA screening in real samples diagnosis and the innovative time/color semi-analytical recognition strategy. Moreover, the prepared OD-μPCD decorated by AgNPrs could be a prized candidate for commercialization due to the benefits of the low-cost materials used, like paper and paraffin, and portability. This innovative process led to uniform hydrophilic micro-channels on the surface of cellulose, without the use of a UV lamp, clean room, and organic solvents. This report could be a pioneering work, inspiring simple and effective on-site semi-analytical recognition devices for harmful substances or illegal drugs, which simply consist of a piece of lightweight paper and one drop of the required reagent.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
3
|
Hassanpour S, Petr J. A disposable electrochemical sensor based on single-walled carbon nanotubes for the determination of anticancer drug dasatinib. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
AbstractDasatinib is an anticancer drug that treats acute lymphoblastic leukemia, chronic myelogenous leukemia, and prostate cancer with several side effects. In this research, we suggest nanoparticle-modified screen-printed electrodes (SPCEs) as disposable electrochemical sensors for fast quantification of dasatinib in pharmaceutical formulations. Carbon nanotubes, single-walled carbon nanotubes (SWCNT), graphene, and graphene oxide-modified SPCEs were characterized by scanning electron microscopy. The study also recommends SWCNT-modified SPCEs as the best-performing electrode for determining dasatinib, demonstrating an excellent boosting effect on the oxidation response of dasatinib. This was accomplished using the square-wave voltammetry method. After optimization of the pH condition, pH 5.0 Britton–Robinson buffer, SWCNT-modified SPCEs demonstrated 94% recovery with optimum electro-oxidation activity. The oxidation currents exhibited linear relation with dasatinib concentration in the 0.1–100 µM. Based on the results, a limit of detection of 0.06 µM was obtained in the standard solution. The SWCNT-modified SPCEs have been applied to analyze dasatinib in pharmaceutical tablet samples. The demonstrated performance beats all comparable standard analytical tools and presumably may be used for general drug quantitation in pharmaceutical tablets.
Graphical abstract
Collapse
|
4
|
Jamshidi M, Walcarius A, Thangamuthu M, Mehrgardi M, Ranjbar A. Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress. Mikrochim Acta 2023; 190:117. [PMID: 36879086 DOI: 10.1007/s00604-023-05681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Abstract
This review article comprehensively discusses the various electrochemical approaches for measuring and detecting oxidative stress biomarkers and enzymes, particularly reactive oxygen/nitrogen species, highly reactive chemical molecules, which are the byproducts of normal aerobic metabolism and can oxidize cellular components such as DNA, lipids, and proteins. First, we address the latest research on the electrochemical determination of reactive oxygen species generating enzymes, followed by detection of oxidative stress biomarkers, and final determination of total antioxidant activity (endogenous and exogenous). Most electrochemical sensing platforms exploited the unique properties of micro- and nanomaterials such as carbon nanomaterials, metal or metal oxide nanoparticles (NPs), conductive polymers and metal-nano compounds, which have been mainly used for enhancing the electrocatalytic response of sensors/biosensors. The performance of the electroanalytical devices commonly measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in terms of detection limit, sensitivity, and linear range of detection is also discussed. This article provides a comprehensive review of electrode fabrication, characterization and evaluation of their performances, which are assisting to design and manufacture an appropriate electrochemical (bio)sensor for medical and clinical applications. The key points such as accessibility, affordability, rapidity, low cost, and high sensitivity of the electrochemical sensing devices are also highlighted for the diagnosis of oxidative stress. Overall, this review brings a timely discussion on past and current approaches for developing electrochemical sensors and biosensors mainly based on micro and nanomaterials for the diagnosis of oxidative stress.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alain Walcarius
- Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Madasamy Thangamuthu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Masoud Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Ben Attig J, Latrous L, Galvan I, Zougagh M, Ríos Á. Rapid determination of malondialdehyde in serum samples using a porphyrin-functionalized magnetic graphene oxide electrochemical sensor. Anal Bioanal Chem 2023; 415:2071-2080. [PMID: 36808275 PMCID: PMC10079708 DOI: 10.1007/s00216-023-04594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
An electrochemical sensor based on a screen-printed carbon electrode (SPCE) modified with porphyrin-functionalized magnetic graphene oxide (TCPP-MGO) was developed for the sensitive and selective determination of malondialdehyde (MDA), an important biomarker of oxidative damage, in serum samples. The coupling of TCPP with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration, and manipulation of analyte, which is selectively captured onto the TCPP-MGO surface. The electron-transfer capability in the SPCE was improved through derivatization of MDA with diaminonaphthalene (DAN) (MDA-DAN). TCPP-MGO-SPCEs have been employed to monitor the differential pulse voltammetry (DVP) levels of the whole material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01-100 µM) with a correlation coefficient of 0.9996. The practical limit of quantification (P-LOQ) of the analyte was 0.010 µM, and the relative standard deviation (RSD) was 6.87% for 30 µM MDA concentration. Finally, the developed electrochemical sensor has demonstrated to be adequate for bioanalytical applications, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.
Collapse
Affiliation(s)
- Jihène Ben Attig
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Laboratoire de Chimie Analytique Et Electrochimie, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Ismael Galvan
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain. .,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.
| |
Collapse
|
6
|
Montoro-Leal P, Zougagh M, Sánchez-Ruiz A, Ríos Á, Vereda Alonso E. Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
9
|
Motia S, Bouchikhi B, El Bari N. An electrochemical molecularly imprinted sensor based on chitosan capped with gold nanoparticles and its application for highly sensitive butylated hydroxyanisole analysis in foodstuff products. Talanta 2020; 223:121689. [PMID: 33303142 DOI: 10.1016/j.talanta.2020.121689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
One of the most widely used synthetic antioxidants in food, butylated hydroxyanisole (BHA) has raised serious concerns due to its potential toxic effects on human health. Hence, elaboration of simple, effective and sensitive methods for BHA detection is pressing. In this regards, the present research work highlights a facile, simple, and fast synthesis approach for the development of an electrochemical sensor for the analysis of BHA in foodstuffs. In this study, the chitosan (CS) capped with gold nanoparticles (AuNPs) were self-assembled on a screen-printed carbon electrode (SPCE) and complete the elaboration of the molecularly imprinted polymer (MIP) sensor in the presence of BHA as templates. The electrochemical behaviour of the MIP sensor was investigated by using electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). Similarly, the morphology of the electrodes surface of the different elaboration steps was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). In addition, the obtained results demonstrate satisfactory sensitivity and selectivity to BHA compared to interfering species, including ascorbic acid and citric acid. Under optimal experimental conditions, the MIP sensor exhibits responses proportional to concentrations over a range of 0.01-20 μg mL-1, with a low detection limit (LOD) of 0.001 μg mL-1 (signal-to-noise ratio S/N = 3). Besides, the reproducibility, stability, and repeatability of the MIP sensor were proven. Taking into account all these outcomes, the MIP sensor well demonstrates its ability towards the determination of BHA in food samples with a relative standard deviation (RSD ≤ 8%). Spectrophotometry was utilized as a validation method. Partial least squares (PLS) prediction models were constructed from the MIP sensor and spectrophotometer data with a regression coefficient (R = 0.99). According to the achieved outcomes, the MIP sensor could be a viable tool for food control.
Collapse
Affiliation(s)
- Soukaina Motia
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco; Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco
| | - Nezha El Bari
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco.
| |
Collapse
|
10
|
Ashrafi H, Hassanpour S, Saadati A, Hasanzadeh M, Ansarin K, Ozkan SA, Shadjou N, Jouyban A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Hasanzadeh M, Babaie P, Jouyban-Gharamaleki V, Jouyban A. The use of chitosan as a bioactive polysaccharide in non-invasive detection of malondialdehyde biomarker in human exhaled breath condensate: A new platform towards diagnosis of some lung disease. Int J Biol Macromol 2018; 120:2482-2492. [DOI: 10.1016/j.ijbiomac.2018.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022]
|
12
|
Hasanzadeh M, Mohammadzadeh A, Jafari M, Habibi B. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB‑chitosan) doped with silver nanoparticles. Int J Biol Macromol 2018; 120:2048-2064. [DOI: 10.1016/j.ijbiomac.2018.09.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
13
|
Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int J Biol Macromol 2018; 123:1091-1105. [PMID: 30458193 DOI: 10.1016/j.ijbiomac.2018.11.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Chitosan has a number of commercial and possible biomedical uses. Chitosan as a polysaccharide is a bioactive polymer with a variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. In this work, cross-linked chitosan/thiolated graphene quantum dot as a biocompatible polysaccharide was modified by gold nanoparticle and used for immobilization of ractopamine (RAC) aptamer. A highly specific DNA-aptamer (5'-SH-AAAAAGTGCGGGC-3'), selected to RAC was immobilized onto thiolated graphene quantum dots (GQDs)-chitosan (CS) nanocomposite modified by gold nanostructures (Au NSs) and used for quantification of RAC. Different shapes of gold nanostructures with various sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a glassy carbon surface which provided a high surface area to immobilize a high amount of the aptamer. Therefore, a label free electrochemical (EC) apta-assay for ultrasensitive detection of RAC was developed. A special immobilization media consisting of Au NSs/GQDs-CS/Cysteamine (CysA) was utilized to improve conductivity and performance of the biosensor. The RAC aptamer was attached on the Au NSs of the composite membrane via AuS bond. The fabrication process of the EC aptamer based assay was characterized by some electrochemical techniques. The peak currents obtained by differential pulse voltammetry decreased linearly with the increasing of RAC concentrations and the apta-assay responds approximately over a wide dynamic range of RAC concentration from 0.0044 fM to 19.55 μM. The low limit of quantification was 0.0044 fM.
Collapse
|